Integration of the HIV-1 provirus in the host genome ensures a persistent supply of latently infected cells. This latent reservoir is recalcitrant to antiretroviral therapy (ART) making lifelong treatment the only option for patients. The “shock and kill” strategy aims to eradicate latent HIV by reactivating proviral gene expression followed by ART treatment. Gene specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising small guide RNAs (sgRNAs) with a nuclease deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the LTR promoter of HIV-1 and identified a “hotspot” for activation. We studied the functionality of activating sgRNAs to transcriptionally modulate the latent proviral genome across multiple different in vitro latency cell models including several J-Lat, ACH2 J1.1 and the CEM T cell model comprising a single clonal population of integrated mCherry-IRES-Tat from a full-length HIV LTR (LChIT). While we observed variable responses of latent cell models to well-characterized chemical stimuli, we detected consistent efficient activation of latent virus mediated by activator sgRNAs. In addition, transcriptome analysis of chemically treated cells revealed massive non-specific gene dysregulation whereas by comparison, dCas9-VP64/sgRNAs induced specific activation of the integrated provirus. In conclusion, we show the potential for CRISPR-mediated gene activation systems to provide enhanced efficiency and specificity in a targeted latency reactivation strategy. This represents a promising approach to a “functional cure” of HIV/AIDS. Overall design: Three experimental conditions (sgRNA control, TNF treated and sgRNA against the LTR of HIV-1) were analyzed in triplicate using two sequencing lanes
Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex.
No sample metadata fields
View SamplesRenal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMf, CD11cloMf are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMf and CD11cloMf increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways Overall design: CD11chiMf Sham, n=3; CD11chiMf RAS, n=4; CD11cloMf Sham, n=3; CD11cloMf RAS, n=4; KRM Sham, n=4; KRM RAS, n=3;
Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney.
Sex, Age, Specimen part, Cell line, Subject
View SamplesBlastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematological. We used transcriptomic analysis to investigate LXR pathway, and cholesterol metabolism in leukemic cells. Malignancy with a poor prognosis that derives from plasmacytoid dendritic cells (PDC). No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared to those of acute myeloid leukemia (AML) and T-acute lymphoblastic leukemia (T-ALL), as well as the transcriptomic signature of primary PDC. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of ATP Binding Cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with three signaling pathways associated with leukemic cell survival, namely: NF-B activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor IL-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with an increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.
LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis.
Specimen part, Disease, Disease stage
View SamplesNeuronal cultures were treated with candesartan at neuroprotective concentrations followed by excitotoxic glutamate amounts. Candesartan significantly reduced glutamate-induced inflammation. To provide mechanistic insight into the potential targets and pathways that may underlie these benefits, we performed genome wide expression profile analysis and evaluated the data by Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA). We found that the inflammation signal transduction pathways were major components of the neuronal response to glutamate excitotoxicity, and that candesartan significantly ameliorated glutamate-induced alterations in gene expression. Further analysis showed significant associations of these genes with two independent published networks identified by microarray analysis of hippocampal samples obtained post-mortem from brains of patients diagnosed with AD .
An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer's disease.
Specimen part, Treatment
View SamplesMultiple sclerosis (MS) is a neurodegenerative disease with a presumed autoimmune component. Expression profiling in immune cells can therefore be used in order to identify genes and pathways involved in MS pathogenesis.
Systematic review of genome-wide expression studies in multiple sclerosis.
Specimen part, Disease, Disease stage
View SamplesHaving found that LexA degradation was significantly higher under apoptotic like death (ALD) than under SOS conditions, we hypothesized that additional genes tightly regulated by LexA would be transcribed under ALD conditions.
Apoptosis-like death, an extreme SOS response in Escherichia coli.
Disease, Treatment
View SamplesNeuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation.
Specimen part, Cell line, Treatment
View SamplesLPS and Telmisartan co-treatment of microglial BV2 cells.
Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation.
Specimen part, Cell line, Treatment
View SamplesLPS, Telmisartan and GW9662 co-treatment of microglial BV2 cells.
Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation.
Specimen part, Cell line, Treatment
View Samples