This SuperSeries is composed of the SubSeries listed below.
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.
Specimen part, Time
View SamplesTo determine what DNA methylation and gene expression changes occur following EBV transformation. B-cells were isolated from 3 donors. Resting, CD40 activated and EBV transfromed cells from each donor was analyzed. Each sample was assayed using Affymetrix expression arrays and whole genome bisulfite sequenicng. Additional time points during transformation and activation were sequenced as well, but not assayed for expression.
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.
Specimen part
View SamplesDNA methylation, at CpG islands and promoters, is often inversely correlated with gene expression.
The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores.
Specimen part
View SamplesHuman mucosal surfaces contain a wide range of microorganisms. The biological effects of these organisms are largely unknown. Large-scale metagenomic sequencing is emerging as a method to identify novel microbes. Unexpectedly, we identified DNA sequences homologous to virus ATCV-1, an algal virus not previously known to infect humans, in oropharyngeal samples obtained from healthy adults. The presence of ATCV-1 was associated with a modest but measurable decrease in cognitive functioning. A relationship between ATCV-1 and cognitive functioning was confirmed in a mouse model, which also indicated that exposure to ATCV-1 resulted in changes in gene expression within the brain. Our study indicates that viruses in the environment not thought to infect humans can have biological effects.
Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice.
Treatment
View SamplesFrankincense oil is prepared from aromatic hardened wood resin obtained by tapping Boswellia trees. For thousands of years, it has been important both socially and economically as an ingredient in incense and perfumes. Frankincense oil is a botanical oil distillate made from fermented plants that contains boswellic acid, a component known to have anti-neoplastic properties. We evaluated frankincense oil-induced cytotoxicity in bladder cancer cells. With a window of concentration, frankincense oil suppressed cell viability and induced cytotoxicity in bladder transitional carcinoma J82 cells but not normal bladder urothelial UROtsa cells immortalized with SV40 large T antigen. However, frankincense oil-induced J82 cell death did not result in DNA fragmentation. Microarray and bioinformatics analysis confirmed that frankincense oil activated cell cycle arrest, suppressed cell proliferation, and activated apoptosis in J82 cells through a series of potential pathways. These finding suggest that bladder cancer can be treated through intravesical administration of pharmaceutical agents similar to direct application on melanoma.
Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity.
No sample metadata fields
View SamplesRibosome Profiling was employed to learn about Ribosome A-site occupancies in response to uL11 siRNA treatment or scrambled siRNA treatment in Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Overall design: Ribosome Profiling of cells 96h after siRNA transfection
Slowing ribosome velocity restores folding and function of mutant CFTR.
Specimen part, Subject
View SamplesDeep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that Metal Response Element Binding Transcription Factor 2/Polycomblike 2 (MTF2/PCL2) plays a fundamental role in the Polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML. Unbiased systems analyses identified the loss of MTF2-PRC2 repression of MDM2 as central to, and therefore a biomarker for, refractory AML. Thus, immature MTF2- deficient CD34+CD38- cells overexpress MDM2, thereby inhibiting p53 that leads to chemoresistance due to defects in cell cycle regulation and apoptosis. Targeting this dysregulated signaling pathway by MTF2 overexpression or MDM2 inhibitors sensitized refractory patient leukemic cells to induction chemotherapeutics and prevented relapse in AML patient-derived xenograft (PDX) mice. Therefore, we have uncovered a direct epigenetic mechanism by which MTF2 functions as a tumor suppressor required for AML chemotherapeutic sensitivity and identified a potential therapeutic strategy to treat refractory AML. Overall design: Fold change analysis between treatment and control
Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy.
Specimen part, Subject
View SamplesWe have identified candidate genes from the Feml2 QTL influencing femur length through allele specific expression analysis of growth plates in C57BL/6J x CAST/EiJ F1 hybrids. This work provides the foundation to identify novel genes affecting bone geometry. Overall design: total RNA sequencing in 7 male C57BL/6JxCAST F1s
Genetic Dissection of a QTL Affecting Bone Geometry.
Sex, Age, Specimen part, Cell line, Subject
View SamplesIn fission yeast, the nuclear-localized Lsk1p-Lsc1p-Lsg1p cyclin dependent kinase complex is required for the reliable execution of cytokinesis and is also required for Ser-2 phosphorylation RNA pol II carboxy terminal domain.
Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.
No sample metadata fields
View SamplesSignal intensity data for rpd3 delete, H3delta(1-28), H3(K4,9,14,18,23,27Q), H4delta(2-26), H4(K5,8,12,16Q), rpd3 delete H3delta(1-28), and rpd3 delete H4(K5,8,12,16Q) yeast grown in rich (YPD) media
Genome-wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast.
No sample metadata fields
View Samples