Toxoplasma strains are known to inhibit the expression of several interferon-gamma induced genes, and a type II strain was shown to dysregulate genome-wide responses to interferon-gamma in human fibroblasts (Kim et al., 2007, J Immunol.). In this study we aimed to determine the effect of infection with three clonal lineages of Toxoplasma, type I, II, and III strains on genome-wide interferon-gamma induced transcription in murine macrophages. We also assessed the effect of the two main Toxoplasma modulators of mouse macrophage transcription, ROP16 and GRA15 (Jensen et al., 2011, Cell Host Microbe).
Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFNγ induced gene expression and STAT1 phosphorylation.
Specimen part
View SamplesAlternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and known to contribute to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond individual DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity. Overall design: Bone marrow derived macrophages (BMDM) from female AxB/BxA mice were left unstimulated or stimulated with IFNG/TNF, or CpG for 18 hrs or infected with infected with type II (Pru A7) for 8 hrs. The transcriptional response was then measured using the illumina RNA-seq protocol on an illumuna HiSeq 2000.
The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesThe Toxoplasma type I ROP16 kinase directly activates the host STAT3 and STAT6 transcription factors and regulates the expression of many host genes. However, many of genes lack known STAT3/6 transcription factor binding sites in their promoter regions.
Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15.
Specimen part
View SamplesThe Toxoplasma type I ROP16 kinase directly activates the host STAT3 and STAT6 transcription factors and when transgenically expressed in the orally virulent type II strain, promotes host resistance to oral challenge.
Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.
Specimen part, Treatment
View SamplesType I strains of Toxoplasma gondii exhibit phenotypic variation, but it is uncertain how differently type I strains modulate the host cell. We determined differential host modulation by type I strains through microarray.
Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.
Specimen part, Treatment
View SamplesWe wanted to determine how type II versus type III Toxoplasma infection affect host gene expression
Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation.
Cell line
View Samples