Adam10, a cell surface protease, cleaving many proteins including TNF-alpha and E-cadherin. Here we investigate the genome wide effects of Adam10 knock out on the transcriptome.
The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.
Specimen part
View SamplesThe intercalated disc of cardiac myocytes is emerging as a crucial structure in the heart. Loss of intercalated disc proteins like N-cadherin causes lethal cardiac abnormalities, mutations in intercalated disc proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein-2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. Complete loss of LIMP-2 in genetically engineered mice did not affect cardiac development; however these LIMP-2 null mice failed to mount a hypertrophic response to increased blood pressure but developed cardiomyopathy. Disturbed cadherin localization in these hearts suggested that LIMP-2 has important functions outside lysosomes. Indeed, we also find LIMP-2 in the intercalated disc, where it associates with cadherin. RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated b-catenin to cadherin, while overexpression of LIMP-2 has the opposite effect. Taken together, our data show that lysosomal integrated membrane protein-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the intercalated disc.
Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy.
No sample metadata fields
View SamplesAdam17, a shedding protease, is strongly upregtulated during inflammation and cancer. Here we investigate the genome wide effects of Adam17 knock out on the transcriptome.
Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice.
Specimen part
View SamplesThe aim of this analysis was to investigate the changes in the gene expression pattern of ex vivo cultured wildtype murine osteoclasts during the course of osteoclastogenic differentiation.
The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover.
Sex, Specimen part
View SamplesHuman dendritic cells were exposed to LPS, in the absence and presence of adenosine receptor 3 inhibitor Overall design: 4 donors, 4 experimental conditions. VUF concentration used was 5 µM, LPS was 500 ng/ml. Exposure times were 6 hours
TLR-Induced IL-12 and CCL2 Production by Myeloid Cells Is Dependent on Adenosine A<sub>3</sub> Receptor-Mediated Signaling.
Specimen part, Subject
View SamplesThe pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury or sham surgery (n=12). One week after RLN injury, larynges were harvested following euthanasia. mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles, and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries.
Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.
Sex, Specimen part, Treatment
View SamplesTamoxifen (Nolvadex) is one of the most widely used and effective therapeutic agent for breast cancer. It benefits nearly 75% of patients with ER-positive breast cancer that receive this drug. Its effectiveness is mainly attributed to its capacity to function as an estrogen receptor (ER) antagonist, blocking estrogen binding sites on the receptor, and inhibiting the proliferative action of the receptor-hormone complex. Although, tamoxifen can induce apoptosis in breast cancer cells via upregulation of pro-apoptotic factors, it can also promote uterine hyperplasia in some women. Thus, tamoxifen as a multi-functional drug could have different effects on cells based on the utilization of effective concentrations or availability of specific co-factors. Evidence that tamoxifen functions as a GPR30 (G-Protein Coupled Receptor 30) agonist activating adenylyl cyclase and EGFR (Epidermal Growth Factor Receptor) intracellular signaling networks, provides yet another means of explaining the multi-functionality of tamoxifen. Here ordinary differential equation (ODE) modeling, RNA sequencing and real time qPCR analysis were utilized to establish the necessary data for gene network mapping of tamoxifen-stimulated MCF-7 cells, which express the endogenous ER and GPR30. The gene set enrichment analysis and pathway analysis approaches were used to categorize transcriptionally upregulated genes in biological processes. Of the 2,713 genes that were significantly upregulated following a 48 h incubation with 250 µM tamoxifen, most were categorized as either growth-related or pro-apoptotic intermediates that fit into the Tp53 and/or MAPK signaling pathways. Collectively, our results display that the effects of tamoxifen on the breast cancer MCF-7 cell line are mediated by the activation of important signaling pathways including Tp53 and MAPKs to induce apoptosis. Overall design: Gene expression analysis between tamoxifen-treated MCF-7 cells and untreated MCF-7 cells.
Tamoxifen-Induced Apoptosis of MCF-7 Cells via GPR30/PI3K/MAPKs Interactions: Verification by ODE Modeling and RNA Sequencing.
Cell line, Subject
View SamplesIn this accession we provide pseudouridylation measurements upon knockdown and/or overexpression three pseudouridine synthases, two of which (TRUB1 and PUS7) we find to be with predominant activity on mammalian mRNA. Overall design: Examination of pseudouridylation upon genetic perturbation of three pseudouridine synthases
TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code.
Cell line, Treatment, Subject
View SamplesThe goal of this study was to determine the effects of a well-characterized anti-androgen, abiraterone acetate, and a suspected human anti-androgen, di-n-butyl phthalate (DBP) on the androgenic function of human fetal testis. Human fetal testis was xenografted into the renal subcapsular space of castrated male athymic nude mice. Hosts were treated with hCG to stimulate testosterone production in the xenografts, and were concurrently treated with either abiraterone acetate or DBP. While abiraterone acetate (14 d, 75 mg/kg/d p.o.) dramatically reduced testosterone and the weights of androgen-sensitive host organs, DBP (14 d, 500 mg/kg/d p.o.) had no effect on androgenic endpoints.
Differential response to abiraterone acetate and di-n-butyl phthalate in an androgen-sensitive human fetal testis xenograft bioassay.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.
Cell line, Time
View Samples