There is emerging evidence that, beyond their cholesterol lowering properties, statins exhibit important antileukemic effects in vitro and in vivo, but the precise mechanisms by which they generate such responses remain to be determined. We have previously shown that statins promote differentiation of acute promyelocytic leukemia (APL) cells and enhance generation of all-trans-retinoic acid (ATRA)-dependent antileukemic responses. We now provide evidence that statin-dependent leukemic cell differentiation requires engagement and activation of the JNK kinase pathway. In addition, in experiments to define the molecular targets and mediators of statin-induced differentiation we found a remarkable effect of statins on ATRA-dependent gene transcription, evidenced by the selective induction of over 400 genes by the combination of atorvastatin and ATRA. Altogether, our studies identify novel statin molecular targets linked to differentiation, establish that statins modulate ATRA-dependent transcription, and suggest that combined use of statins with retinoids may provide a novel approach to enhance antileukemic responses in APL and possibly other leukemias.
Regulation of leukemic cell differentiation and retinoid-induced gene expression by statins.
No sample metadata fields
View Samples5 strains of rat, WKY, spontaneously hypertensive rat (SHR) and 3 reciprocal congenic strains (WconSA, SconSA and SISA) were used to generate expression data across the genome using the Affymetrix rat genome chip set comprising the 230 A and 230 B chips. 5 animals from each strain were used. Expression data was determined for 2 ages: 6 week and 24 week with whole kidney RNA.
Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene.
Age, Specimen part
View SamplesInterleukin-6 (IL-6) is an important growth factor for estrogen receptor-alpha (ER) positive breast cancer, and elevated serum IL-6 is associated with poor prognosis. We firstly demonstrated that pSTAT3 is the primary downstream IL-6 signaling pathway in ER-positive breast cancer, using ten different breast cancer cell lines. Three-dimensional cultures of these cell lines were also used to develop a 17-gene IL-6 specific gene signature that could be used to identify IL-6 driven disease. This signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. To further validate this IL-6 signature, we obtained 36 human ER-positive breast cancer tumor samples with matched serum for gene expression profiling and determination of an IL-6 pathway activation score (PAS). Patients with high IL-6 PAS were also enriched for elevated serum IL-6 (>=10 pg/ml). We then utilized a murine MCF-7 xenograft model to determine the role of IL-6 in ER-positive breast cancer and potential anti-IL-6 therapy in vivo. When IL-6 was administered in vivo, MCF-7 cells engrafted without the need for estrogen supplementation. Subsequently, we prophylactically treated mice at MCF-7 engraftment with an anti-IL-6 antibody (siltuximab), fulvestrant or combination therapy. Siltuximab alone was able to blunt MCF-7 engraftment. Similarly, when tumors were allowed to grow to 125 mm3 before treatment, siltuximab alone demonstrated tumor regressions in 90% (9/10) of tumors. Given the established role for IL-6 in ER+ breast cancer, this data demonstrates the potential for anti-IL-6 therapeutics.
Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer.
Specimen part
View SamplesWe found that a H3K4 specific histone methyltransferase MLL1, a mammalian homologue of Drosophila trithorax, is essential for circadian transcription. MLL1 is in a complex with CLOCK:BMAL1 and contributes to their rhythmic recruitment to circadian promoters and cyclic H3K4 tri-metylation. To analyze the function of MLL1 on circadian gene regulation, we performed comparative microarray analysis of global gene expression levels in WT and MLL1-deficient MEF, at two different circadian time points (CT18 and CT30). This analysis identified several genes whose expression levels were remarkably changed between CT18 and CT30 in WT and MLL1-KO MEF. Typical clock-regulated genes such as Per2, Per3, Bmal1, or Dbp were found to be changing in WT but not in MLL1-KO MEFs.
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
Specimen part, Time
View SamplesThere is some emerging evidence that members of the Schlafen (SLFN) family of proteins mediate antineoplastic responses, but the mechanisms accounting for these effects are not known. We provide evidence that human SLFN5, an interferon (IFN)- inducible member of the family, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of matrix metalloproteinases (MMP)-1 and -13 and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression. Overall design: Examination of 2 SLFN5 knockdown cells and 2 controls, in triplicate.
Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells.
No sample metadata fields
View SamplesProstate cancer (PCa) development and progression are associated with chronic inflammation. The cytokine interleukin (IL)-6 can influence progression, differentiation, survival, and angiogenesis of PCa. To identify novel pathways that are triggered by IL-6, we performed a gene expression profiling of two PCa cell lines, LNCaP and MDA PCa 2b, under treatment with 5 ng/ml IL-6. Interferon regulatory factor (IRF)9 was identified as one of the most prevalent IL-6 regulated genes in both cell lines. IRF9 is a mediator of type I interferon signaling and acts together with signal transduction and activator of transcription (STAT)1 and 2 to activate transcription of interferon responsive genes. The IL-6 regulation of IRF9 was confirmed at mRNA and protein levels by quantitative real-time PCR and Western blot, respectively, in both cell lines and could be blocked by the anti-IL-6 antibody Siltuximab. Three PCa cell lines with an autocrine IL-6 loop, PC3, DU145, and LNCaP-IL-6+, showed a high expression of IRF9. A tissue microarray with 36 malignant and adjacent 36 benign areas from prostate cancer specimens showed that IRF9 protein expression is moderately elevated in malignant areas and positively correlates with the tissue expression of IL-6. Downregulation and overexpression of IRF9 provided evidence for an interferon-independent role of IRF9 on cellular proliferation of different PCa cell lines. Furthermore, expression of IRF9 was essential to mediate the antiproliferative effects of IFN-2. We concluded that IL-6 is an inducer of IRF9 expression in prostate cancer and a sensitizer for the antiproliferative effects of IFN2.
IL6 sensitizes prostate cancer to the antiproliferative effect of IFNα2 through IRF9.
Cell line, Treatment
View SamplesProliferative diabetic retinopathy (PDR) is a vision-threatening disorder characterized by the formation of cicatricial fibrovascular membranes leading to traction retinal detachment. Despite the recent advance in the treatment of PDR such as vitreoretinal surgery with use of anti-vascular endothelial growth factor (VEGF) drug as an adjunct, it still remains vision-threatening disease.
Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy.
Specimen part, Disease, Disease stage
View SamplesMouse and human stem cells with features similar to those of embryonic stem cells have been derived from testicular cells. Although pluripotent stem cells have been obtained from defined germline stem cells (GSCs) of mouse neonatal testis, only multipotent stem cells have been obtained so far from defined cells of mouse adult testis. In this study we describe a robust and reproducible protocol for obtaining germline-derived pluripotent stem (gPS) cells from adult unipotent GSCs. Pluripotency of gPS cells was confirmed by in vitro and in vivo differentiation, including germ cell contribution and transmission. As determined by clonal analyses, gPS cells indeed originate from unipotent GSCs. We propose that the conversion process requires a GSC culture microenvironment that depends on the initial number of plated GSCs and the length of culture time.
Induction of pluripotency in adult unipotent germline stem cells.
No sample metadata fields
View SamplesMouse and human stem cells with features similar to those of embryonic stem cells have been derived from testicular cells. Although pluripotent stem cells have been obtained from defined germline stem cells (GSCs) of mouse neonatal testis, only multipotent stem cells have been obtained so far from defined cells of mouse adult testis. In this study we describe a robust and reproducible protocol for obtaining germline-derived pluripotent stem (gPS) cells from adult unipotent GSCs. Pluripotency of gPS cells was confirmed by in vitro and in vivo differentiation, including germ cell contribution and transmission. As determined by clonal analyses gPS cells indeed originate from unipotent GSCs. We propose that the conversion process requires a GSC culture microenvironment that depends on the initial number of plated GSCs and the length of culture time.
Induction of pluripotency in adult unipotent germline stem cells.
Specimen part
View SamplesThe satellite cell is considered the major tissue-resident stem cell underlying muscle regeneration, however, multiple non-satellite cell myogenic progenitors have been identified. PW1/Peg3 is expressed in satellite cells as well as a subset of interstitial cells with myogenic potential termed PICs (PW1+ Interstitial Cells). PICs differ from satellite cells by their anatomical location (satellite cells are sublaminal and PICs are interstitial), they do not express any myogenic marker and arise from a Pax3-independent lineage. Upon isolation from juvenile muscle (1 to 3 weeks old), PICs are capable to form both skeletal and smooth muscle suggesting they constitute a more plastic population compared to satellite cells. We used microarrays to gain insight into the relantionship between PICs and satellite cells.
Defining skeletal muscle resident progenitors and their cell fate potentials.
Age, Specimen part
View Samples