Mediator is regarded a general co-activator of RNA-Polymerase II dependent transcription but not much is known about its function and regulation in mouse pluripotent embryonic stem cells (mESC). One means of controlling Mediator function is provided by binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to Mediator. Here we report that the Cdk8 module subunit Med12 operates together with PRC1 to silence developmental key genes in the pluripotent state. At the molecular level, PRC1 is required to assemble ncRNA containing Med12-Mediator complexes at promoters of repressed genes. In the course of cellular differentiation the H2A-ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the recruitment of Cdk8 into Mediator. Remodeling of the Mediator-associated protein complex converts Mediator into a transcriptional enhancer that mediates ncRNA-dependent activation of Polycomb target genes Overall design: RNAseq of pluripotent (control, shNMC, shRing1b, shMed12, shCdk8, shZrf1) and early differentiating (control, shNMC, shMed12, shCdk8, shZrf1) stem cells in triplicates. Control would be normal E14TG2A mESCs. shNMC refers to E14TG2A cells stably transfected with a short hairpin that has no mammalian targets (Non Mammalian Control). All the other samples are indeed stably transfected with short hairpins against the indicated genes.
Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation.
Specimen part, Cell line, Subject
View SamplesTo follow the changes in the transcriptional programs accompanying the specification of the adult ISCs we sequenced whole transcriptomes of embryonic intestinal epithelium progenitors (at E11.5 and E12.5) and adult ISCs. EpCAM positive embryonic gut epithelium was isolated from dissected small intestines using fluorescence activated cell sorting (FACS). Adult ISCs were purified on the basis of GFP fluorescence from crypts of Lgr5GFP-Cre-ERT mice (Barker et al. 2007) Double positive adlut ISCs were isolated by FACS based on GFP and tdTomato fluorescence. Overall design: Intestinal epithelial cells from two embryonic stages (E11.5 and E13.5), mesenchymal (E11.5) and adult Lgr5+ ISCs were used. For embryonic stages biological triplicates were analysed. For the adult ISCs either 4 biological replicates ot duplicates were analysed.
Id2 controls specification of Lgr5<sup>+</sup> intestinal stem cell progenitors during gut development.
Specimen part, Cell line, Subject
View SamplesProteome and transcriptome often show poor correlation, hindering the system-wide analysis of post-transcriptional regulation. Here, the authors study proteome and transcriptome dynamics during Drosophila embryogenesis and present basic mathematical models describing the temporal regulation of most protein-RNA pairs. Overall design: Whole embryos of Drosophila melanogaster measured at 14 time points during the first 20h of development (0h, 1h, 2h, 3h, 4h, 5h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h). Each sample was measured in biological quadruplicates. RNAseq samples correspond to proteome measurements deposited in ProteomeXchange as PXD005713.
Quantifying post-transcriptional regulation in the development of Drosophila melanogaster.
Specimen part, Cell line, Subject
View SamplesGenome-wide expression analysis of 228 hepatocellular carcinoma and 168 cirrhotic samples as part of a integrated study of gene expression and DNA-methylation de-regulation in patients with hepatocellular carcinoma
DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma.
Sex, Specimen part, Disease, Subject
View SamplesHow spatial chromosome organization influences genome integrity is still poorly understood. Here we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities, are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CTCF/cohesin bound sites at the bases of chromatin loops and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias, are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hot spots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability, and are key contributors to the occurrence of genome rearrangements that drive cancer. Overall design: Nuclear RNA profiling in lymphoblastoid TK6 cell line
Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations.
Specimen part, Cell line, Subject
View SamplesGlud1 (Glutamate dehydrogenase 1) transgenic mice release more excitatory neurotransmitter glutamate to synaptic cleft throughout lifespan.
Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.
Specimen part
View SamplesMesenchyme-derived cells in the human airway wall including airway smooth muscle cells, fibroblasts and myofibroblasts are known to play important roles in airway remodeling. The lack of specific phenotypic markers makes it difficult to define these cell populations in primary cultures. The objectives of this study were to evaluate reported markers and to identify novel markers to define these cell types.
Can lineage-specific markers be identified to characterize mesenchyme-derived cell populations in the human airways?
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.
Specimen part, Cell line, Treatment, Subject
View SamplesTyrosine kinase inhibitors (TKIs), despite efficacy as anti-cancer therapies, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We have utilized patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen FDA-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a cardiac safety index to assess cardiotoxicities of existing TKIs. Many TKIs with a low cardiac safety index exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that VEGFR2/PDGFR-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. Using phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Activating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during co-treatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anti-cancer TKIs, correlating with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.
High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.
Treatment, Subject
View SamplesTranslating ribosome affinity purification technology was used to isolate mRNAs from cerebellar Purkinje neurons from control (Pcp2-BacTrap; Rbm17 f/+) and mutant (Pcp2-BacTRAP; Pcp2-Cre; Rbm17 f/-) mice. Overall design: RNA isolation was performed when animals were four-weeks-old (n=3 animals per genotype). Using NuGEN Ovation RNA-Seq System v2, purified double-stranded cDNA was generated from 10 ng of total RNA and amplified using both 3' poly (A) selection and random priming. 2 µg of each sample was sheared using the Covaris S2 focused-ultrasonicator following the manufacturer's protocol to obtain a final library with insert size of 400 bp. The sheared samples were quantified using the NanoDrop ND-1000 spectrophotometer and Invitrogen Qubit 2.0 DNA quantitation assay. The fragment sizes were confirmed on the Agilent Bioanalyzer to verify proper shearing. A double-stranded DNA library was produced using Illumina TruSeq DNA library preparation system and the sequencing was run on a HiSeq 2500 system.
Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models.
Specimen part, Cell line, Subject
View Samples