Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to decreased levels of brain BCAAs, abnormal mRNA translation and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function. Overall design: RNA-sequencing of cerebellum from 3 wildtype mice and 3 Slc7a5 KO mice
Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder.
Specimen part, Subject
View SamplesWe report XBP1 activation and regulation of pro-inflammatory signaling in astrocytes, microglia, and CNS-recruited pro-inflammatory monocytes during EAE. Overall design: Analysis of RNA expression in astrocytes, microglia, and monocytes sorted by flow cytometry. Mice transduced with astrocyte-targeting lentiviruses encoding non-targeting or Xbp1-targeting shRNAs.
Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation.
Sex, Disease, Cell line, Subject
View SamplesLiving organisms have to cope with multiple and combined fluctuations in their environment. According to their sessile mode of life, plants are even more subjected to such fluctuations impacting their physiology and development. In particular, nutrient availability is known to tune plant development through modulating hormonal signaling, and conversely, hormonal signals are key to control nutrient related signaling pathways (Krouk et al., 2011a). However, very few is known about molecular mechanisms leading to plant adaptation to such combined signals. Here we deployed an unprecedented combinatorial treatment matrix to reveal plant adaptation in response to nitrate (NO3-), ammonium (NH4+), auxin (IAA), cytokinins (CK) and abscisic acid (ABA) and their exhaustive binary combinations.
Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root.
Specimen part, Time
View SamplesCharacterize the gpm1 mutant growth on dual substrate of ethanol and glycerol
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis.
No sample metadata fields
View SamplesIn order to define the transcriptional network functionally regulated by Pax8 as well as infer its direct targets, we performed RNAi to knock-down Pax8 gene in FRTL-5 thyroid cells. Expression data from three independent silencing experiments were analyzed by microarray technology unraveling 2815 genes differentially expressed between silenced cells and controls. Of these, 1421 genes were down-regulated and 1394 genes were up-regulated 72hrs after Pax8 silencing.
Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis.
Cell line
View SamplesPlants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remain scarce.
WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.
Treatment
View SamplesAmyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular disorder characterized by the selective degeneration of upper and lower motor neurons, progressive muscle wasting and paralysis. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we performed high-density oligonucleotide microarray analysis of gene expression in hind limb skeletal muscles of sod1(G86R) mice, one of the existing transgenic models of ALS. To monitor denervation-dependent gene expression, we determined the effects of short-term acute denervation on the muscle transcriptome after sciatic nerve axotomy.
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesHER2 is a tyrosine kinase receptor causally involved in cancer. A subgroup of breast cancer patients with particularly poor clinical outcome expresses a heterogeneous collection of HER2 carboxy-terminal fragments (CTFs). However, since the CTFs lack the extracellular domain that drives dimerization and subsequent activation of full-length HER2, they are in principle expected to be inactive. Here we present evidence that at low expression levels one of these fragments, 611-CTF, activated multiple signaling pathways because of its unanticipated ability to constitutively homodimerize. A transcriptomic analysis revealed that 611-CTF specifically controlled the expression of genes that we found correlated with poor prognosis in breast cancer. Among the 611-CTF-regulated genes were several that previously have been linked to metastasis, including MET, EPHA2, MMP1, IL11, ANGPTL4 and different Integrins. Transgenic mice overexpressing HER2 in the mammary gland develop tumors only after acquisition of activating mutations in the transgene. In contrast, we show that expression of 611-CTF led to development of aggressive and invasive mammary tumors without the need for mutations. These results demonstrate that 611-CTF is a potent oncogene capable of promoting mammary tumor progression and metastasis.
A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis.
Cell line, Time
View SamplesFour vehicle-treated and four HhAntag-treated pancreatic xenograft tumors were profiled for gene expression changes using Affymetrix U133 Plus 2.0 and Affymetrix Mouse Genome 430 2.0 arrays.
A paracrine requirement for hedgehog signalling in cancer.
No sample metadata fields
View SamplesThe equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. This is particularly important for the liver, a highly differentiated organ with systemic metabolic functions still endowed with unparalleled regenerative potential. Hepatocellular de-differentiation and uncontrolled proliferation are at the basis of liver carcinogenesis. We have identified SLU7, a pre-mRNA splicing regulator inhibited in hepatocarcinoma as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Hepatocellular proliferation and a switch to a tumor-like glycolytic phenotype were also observed. Mechanistically, SLU7 governed the splicing and/or expression of essential genes for hepatocellular differentiation like SRSF3 and HNF4a, and was identified as a critical factor in cAMP-regulated gene transcription. SLU7 is therefore central for hepatocyte identity and quiescence.
Splicing regulator SLU7 is essential for maintaining liver homeostasis.
Cell line
View Samples