Genome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.
Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.
Cell line, Treatment, Time
View SamplesMaintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.
Specimen part
View SamplesThe protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.
MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation.
Specimen part, Time
View SamplesWhen macrophages encounter pathogens, they transiently induce an orchestrated cascade of pro- and anti-inflammatory genes. We systematically analyzed the contribution of translational regulation to the early phase of macrophage activation. While the expression of most cytokines is regulated by changes in mRNA levels, de-repression of translation was found to permit expression of many feedback inhibitors of the inflammatory response. This includes NF-kB inhibitors (IkBd, IkBz, Nr4a1, Ier3), a p38 MAPK antagonist (Dusp1) and post-transcriptional suppressors of cytokine expression (TTP and Zc3h12a). Ier3 is tightly co-regulated with TNF at the level of mRNA abundance and translation. Macrophages lacking Ier3 show reduced survival upon activation, indicating that induction of Ier3 is required to protect macrophages from lipopolysaccharide-induced cell death. Our analysis reveals an important role of translational regulation in the resolution of inflammation and macrophage survival.
Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation.
Specimen part
View SamplesWhen macrophages encounter pathogens, they transiently induce an orchestrated cascade of pro- and anti-inflammatory genes. To obtain a precise picture of transcriptome-wide mRNA expression patterns, we performed RNA-Seq of total RNA at a high temporal resolution during the first two hours of macrophage activation. We systematically analyzed the contribution of translational regulation to the early phase of macrophage activation. While the expression of most cytokines is pre-dominanatly regulated by changes in mRNA levels, de-repression of translation was found to permit expression of many feedback inhibitors of the inflammatory response. Overall design: Expression profiles of LPS-treated Raw264.7 cells (0, 15, 30, 45, 60, 75, 90 and 120 min after stimulation) were generated by deep sequencing using Illumina HiSeq 2000.
Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation.
No sample metadata fields
View SamplesWe established gene expression profiles of diagnostic bone marrow samples of monozygotic twins with acute lymphoblastic leukemia. We established technical duplicates for each twin.
Prenatal origin of separate evolution of leukemia in identical twins.
Sex, Specimen part, Disease, Disease stage
View SamplesBecause it excises thymine from GT mismatches, TDG was proposed to counter mutagenesis by 5-methylcytosine deamination. Yet, TDG was also observed to attack 5-methycytosine itself, making it a candidate DNA demethylase, and interactions with transcription factors implicated additional functions in gene regulation. Unlike other DNA glycosylases, TDG is essential for embryonic development. Fibroblasts from Tdg null embryos show massively impaired gene regulation, and this correlates with imbalanced histone modification and CpG methylation. TDG associates with the promoters of affected genes in MEFs and in embryonic stem cells, but epigenetic aberrations appear only in differentiated cells. TDG also contributes to the maintenance of active and bivalent chromatin during cell differentiation, using its DNA glycosylase activity to counter aberrant de novo methylation. Thus, TDG dependent DNA repair stabilizes epigenetic states during cell differentiation.
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View Samples