This SuperSeries is composed of the SubSeries listed below.
Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells.
Specimen part, Subject
View SamplesMatrix elasticity influences differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on polydimethylsiloxane (PDMS) gels of different elasticity or on tissue culture plastic (TCP) to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity. Differentiation towards adipogenic and osteogenic lineage was increased on soft and rigid biomaterials, respectively - but this propensity was no more evident if cells were transferred to TCP. Global gene expression profiles and DNAm profiles revealed relatively few differences in MSCs cultured on soft or rigid matrices. Furthermore, only moderate DNAm changes were observed upon culture on very soft hydrogels of human platelet lysate. Our results support the notion that matrix elasticity influences cellular differentiation while the cells are organized on the substrate, but it does not have major impact on cell-intrinsic lineage determination, replicative senescence or DNAm patterns.
Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells.
Specimen part, Subject
View SamplesEstrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen. Overall design: The aortas or liver fragments of wild-type C57/BL6 mice were incubated ex vivo with 10nM E2 or ethanol vehicle for 4 hours before harvesting for RNA collection. Each condition was performed with two biological replicates, and each replicate contained aortas or liver fragments from 4 mice.
Research resource: Aorta- and liver-specific ERα-binding patterns and gene regulation by estrogen.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation.
Specimen part, Treatment
View SamplesMicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We now demonstrate that endogenous and over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). We report that the seed region of moR-21 as well as the seed match region in the target gene 3'UTR are indispensable for moR-21-mediated gene down-regulation. We further demonstrated that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. Taken together, these findings provide the first evidence that microRNA offset RNA regulates gene expression and is biologically active.
MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation.
Specimen part, Treatment
View Samplessubstantial number of people at risk to develop type 2 diabetes could not improve insulin sensitivity by physical training intervention. We studied the mechanisms of this impaired exercise response in 20 middle-aged individuals who performed a controlled eight weeks cycling and walking training at 80 % individual VO2max. Participants identified as non-responders in insulin sensitivity (based on Matsuda index) did not differ in pre-intervention parameters compared to high responders. The failure to increase insulin sensitivity after training correlates with impaired up-regulation of mitochondrial fuel oxidation genes in skeletal muscle, and with the suppression of the upstream regulators PGC1 and AMPK2. The muscle transcriptome of the non-responders is further characterized by an activation of TGF and TGF target genes, which is associated with increases in inflammatory and macrophage markers. TGF1 as inhibitor of mitochondrial regulators and insulin signaling is validated in human skeletal muscle cells. Activated TGF1 signaling down-regulates the abundance of PGC1, AMPK2, mitochondrial transcription factor TFAM, and of mitochondrial enzymes. Thus, increased TGF activity in skeletal muscle can attenuate the improvement of mitochondrial fuel oxidation after training and contribute to the failure to increase insulin sensitivity.
TGF-β Contributes to Impaired Exercise Response by Suppression of Mitochondrial Key Regulators in Skeletal Muscle.
Specimen part
View SamplesWe used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)
In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines.
Specimen part
View SamplesGene expression profile was analyzed after knockdown of PAEP in lung cancer cell lines 2106T and H1975 as well as in skin cancer cell line MeWo.
Glycodelin: A New Biomarker with Immunomodulatory Functions in Non-Small Cell Lung Cancer.
Specimen part, Cell line, Treatment
View SamplesHeterosis which is the improved vigor of F1-hybrids compared to their parents is widely exploited in maize (Zea mays L.) breeding to produce elite hybrids of superior yield. The transcriptomes of the maize inbred lines B73 and Mo17 and their reciprocal hybrid offspring were surveyed in the meristematic zone, the elongation zone, cortex and stele tissues of primary roots, prior to the developmental manifestation of heterosis. Single parent expression (SPE) is consistent with the dominance model for heterosis in that it denotes genes that are expressed in only one parent but in both reciprocal hybrids. In primary root tissues, between 1,027 (elongation zone) and 1,206 (stele) SPE patterns were observed. As a consequence, hybrids displayed in each tissue >400 active genes more than either parent. Analysis of tissue-specific SPE dynamics revealed that 1,233 of 2,233 SPE genes displayed SPE in all tissues in which they were expressed while 1,000 SPE genes displayed in at least one tissue a non-SPE pattern. In addition, 64% (17,351/ 27,164) of all expressed genes were assigned to the two subgenomes which are the result of an ancient genome duplication. By contrast, only between 18 and 25% of the SPE genes were assigned to a subgenome suggesting that a disproportionate number of SPE genes are evolutionary young and emerged after genome duplication. We hypothesize that this phenomenon is associated with human selection of favorable maize genotypes which might primarily affect younger genes rather than genes whose functions have been conserved for millions of years.
Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids.
No sample metadata fields
View SamplesThe clinical impact of aberrant CEBPA promoter methylation (PM) in AML is controversial discussed. The aim of this study was to clarify the significance of aberrant CEBPA PM with regard to clinical features in a cohort of 572 de novo AML with wildtype CEBPA and normal karyotype. The distal promoter was methylated in 54/572 cases (9.41%) whereas proximal PM was never detected. Methylation of the core promoter was detected in only 8 of 326 cases (2.45%) and thus seems to be a rare event in AML. There was no correlation between CEBPA distal PM, age, sex, white blood cell (WBC) count or Hb levels at diagnosis. We also were not able to detect a significant correlation between the presence of CEBPA distal PM and molecular mutations such as FLT3-ITD, NPM1, AML1, MLL-PTD and IDH1. Solely the frequency of IDH2R140 mutations was significantly reduced in CEBPA distal PM positive compared to CEBPA distal PM negative cases (p=0.01). Furthermore, analysis of CEBPA mRNA expression level revealed no difference between CEBPA distal PM positive and CEBPA distal PM negative cases, suggesting that CEBPA distal PM has no influence on CEBPA expression. CEBPA distal PM did not show impact on overall survival (OS), event free survival (EFS) or incidence of relapse. Also when other mutations were taken into regard no prognostic impact of CEBPA distal PM could be shown. In contrast, a distinct expression profile of CEBPA distal PM positive cases compared to CEBPA mutated and CEBPA distal PM negative cases was observed. In addition, a significantly higher frequency of CEBPA distal PM was detected in RUNX1-RUNX1T1 positive AML compared to the CEBPA witdtype cases. We conclude that the presence of aberrant CEBPA PM has no clinical relevance and is therefore a negligible prognostic marker in de novo AML with normal karyotype.
Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases.
Disease
View Samples