Estrogen receptor a (ERa) is an important biomarker of breast cancer severity and a common therapeutic target. Recent studies have demonstrated that in addition to its role in promoting proliferation, ERa also protects tumors against metastatic transformation. Current therapeutics antagonize ERa and interfere with both beneficial and detrimental signaling pathways stimulated by ERa. The goal of this study is to uncover the dynamics of coding and non-coding RNA (microRNA) expression in response to estrogen stimulation and identify potential therapeutic targets that more specifically inhibit ERa-stimulated growth and survival pathways without interfering with its protective features. To achieve this, we exposed MCF7 cells (an estrogen receptor positive model cell line for breast cancer) to estrogen and prepared a time course of paired mRNA and miRNA sequencing libraries at ten time points throughout the first 24 hours of the response to estrogen. From these data, we identified three primary expression trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis of paired mRNA and microRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that over-expression of miR-503 suppresses breast cancer cell proliferation. Overall, these data indicate that miR-503 acts as a potent estrogen-induced tumor suppressor microRNA that opposes cellular proliferation and has promise as a therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression. Overall design: Quantification of mRNAs in MCF7 cells responding to estrogen following a period of estrogen starvation. Three independent biological replicates (30 samples: 3 replicates x 10 time points) of MCF7 cells were exposed to 10nM Estradiol for 0, 1, 2, 3, 4, 5, 6, 8, 12 , or 24 hours, and total RNA was extracted from the samples. Total RNA was used to generate paired RNA and miRNA sequencing. RNA libraries were prepared using an Illumina TruSeq stranded mRNA library preparation kit.
An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells.
No sample metadata fields
View SamplesThe study aimed to identify role of OxyR during growth on different electron acceptors when E. coli are growing anaerobically.
Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR.
No sample metadata fields
View SamplesWe performed deep sequencing of small RNA from mouse insulinoma (MIN6) cells cultured in 25mM glucose. We then developed and implemented an in-house short-read mapping strategy to analyze isomiR diversity. Overall design: Profile of miRNA expression in MIN6 cells cultured in 25mM glucose.
Beta cell 5'-shifted isomiRs are candidate regulatory hubs in type 2 diabetes.
Cell line, Subject
View SamplesGene expression analysis of two different mouse keratinocytes using RNA-Seq Overall design: RNA was collected and analyzed for two biological replicates each from two different mouse keratinocyte cell lines
Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes.
Specimen part, Cell line, Subject
View SamplesOf the thousands of long non-coding RNAs expressed in embryonic stem (ES) cells, few have known roles and fewer have been functionally implicated in the regulation of self-renewal and pluripotency or reprogramming somatic cells to the pluripotent state. In ES cells, Cyrano is a stably expressed long intergenic non-coding RNA with no previously assigned role. We demonstrate that Cyrano contributes to ES cell maintenance, as its depletion results in loss of hallmarks of self-renewal. Delineation of Cyrano''s network through transcriptomics revealed widespread effects on signaling pathways and gene expression networks that contribute to ES cell maintenance. Cyrano shares unique sequence complementarity with the differentiation-associated microRNA, mir-7, and mir-7 overexpression reduces expression of a key self-renewal factor to a similar extent as Cyrano knockdown. This suggests that Cyrano functions to restrain the action of mir-7. Altogether, we provide a view into the multifaceted function of Cyrano in ES cell maintenance. Overall design: RNA-seq on mouse R1 embryonic stem (ES) cells with two biological replicates transfected with an shRNA knockdown of Cyrano and two biological replicates transfected with a non-targeting control vector.
Long Noncoding RNA Moderates MicroRNA Activity to Maintain Self-Renewal in Embryonic Stem Cells.
Specimen part, Cell line, Subject
View SamplesMicroRNAs (miRNAs) are important regulators and potential therapeutic targets of metabolic disease. In this study we show by in vivo administration of locked nucleic acid (LNA) inhibitors that suppression of endogenous miR-29 lowers plasma cholesterol levels by ~40%, commensurate with the effect of statins, and reduces fatty acid content in the liver by ~20%. Whole transcriptome sequencing of the liver reveals 883 genes dysregulated (612 down, 271 up) by inhibition of miR-29. The set of 612 down-regulated genes are most significantly over-represented in lipid synthesis pathways. Among the up-regulated genes are the anti-lipogenic deacetylase sirtuin 1 (Sirt1) and the anti-lipogenic transcription factor aryl hydrocarbon receptor (Ahr), the latter of which we demonstrate is a direct target of miR-29. In vitro radiolabeled acetate incorporation assays confirm that pharmacologic inhibition of miR-29 significantly reduces de novo cholesterol and fatty acid synthesis. Our findings indicate that miR-29 controls hepatic lipogenic programs, likely in part through regulation of Ahr and Sirt1, and therefore may represent a candidate therapeutic target for metabolic disorders such as dyslipidemia. Overall design: Hepatic mRNA profiles of C57BL/6J female mice treated with LNA against miR-29a, miR-29b and miR-29c versus saline.
Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver.
No sample metadata fields
View SamplesThis study aims to investigate the role of microRNA-30c on hepatic and metabolic gene expression and physiology Overall design: For this experiment, we used male C57BL/6 mice. At an age of 8 weeks, we started them on Western diet for one month and then injected them with either PBS or increasing dose of Scr or miR-30c mimic (2.5, 5.0, and 7.5 mg/kg) for 6 weeks. Liver from these mice were harvested and flash frozen. RNA from the livers of these mice were extracted and RNA-seq was performed.
MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice.
No sample metadata fields
View SamplesOrganisms exhibit a fascinating array of gene-silencing pathways, which have evolved in part, to confront invasive nucleic acids such as transposons and viruses. A key question raised by the existence of these pathways is how do they distinguish “self” from “non-self” nucleic acids? Evidence exists for a number of mechanisms that might facilitate detection of foreign sequences including mechanisms that sense copy-number, unpaired DNA, or aberrant RNA (e.g.dsRNA). Here we describe an RNA-induced epigenetic silencing pathway, RNAe, that permanently silences single-copy transgenes. We show that the Piwi Argonaute PRG-1 and its genomically encoded piRNA cofactors initiate RNAe, while maintenance depends on chromatin factors and the WAGO Argonaute pathway. Our findings support a model in which PRG-1 scans for foreign sequences, while two other Argonaute pathways serve as epigenetic memories of "self" and "non-self" RNAs. These findings suggest how organisms may utilize RNAi-related mechanisms not only to recognize and silence foreign genes, but also to keep inventory of all genes expressed in the germ-line. Overall design: Examine small RNA population changes in different transgene lines. FLAG::WAGO-9 was immunoprecipitated from 20 mg of lysate essentially as described (Gu et al., 2009). Small RNAs were extracted from WAGO-9 immune complexes as well as a portion of the input lysate, gel-purified, pre-treated with TAP, cloned and sequenced as described (Gu et al., 2009).
A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans.
Specimen part, Disease, Subject
View SamplesDiverse naturally-occurring small RNA species interact with Argonaute proteins to mediate sequence-specific regulation in animals. In addition to micro-RNAs (miRNAs), which collectively regulate thousands of target mRNAs, other endogenous small RNA species include the Piwi-associated piRNAs that are important for fertility and a less well-characterized class of small RNAs often referred to simply as endo-siRNAs. Here we have utilized deep-sequencing technology and C. elegans genetics to explore the biogenesis and function of endo-siRNAs. We describe conditional alleles of the dicer-related helicase, drh-3, that implicate DRH-3 in both the response to foreign dsRNA as well as the RNA-dependent RNA Polymerase (RdRP)-dependent biogenesis of a diverse class of endogenous small RNAs, termed 22G-RNAs. We show that 22G-RNAs are abundantly expressed in the germline and maternally inherited and are the products of at least two distinct 22G-RNA systems. One system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage-related structures termed P-granules. The WAGO 22G-RNA system silences transposons, pseudogenes and cryptic loci as well as a number of genes. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one of the multiple, distinct WAGO surveillance pathways. These findings broaden our understanding of the biogenesis and diversity of 22G-RNA species and suggest potential novel regulatory functions for these small RNAs. Overall design: 18 samples examined. Small RNA libraries generated from: C. elegans animals with mutations in the WAGO pathway and a WAGO-1 immunopercipitate.
A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans.
Disease, Cell line, Subject
View SamplesThe highly characterized Sox9-EGFP transgenic mouse model, which permits the isolation and analysis of four distinct IEC populations using fluorescence-activated cell sorting (FACS) based on differing levels of cellular EGFP intensity. These are Sox9-EGFP Low (actively cycling IESCs), Sox9-EGFP Sublow (progenitor cells), Sox9-EGFP Neg (mostly differentiated enterocytes as well as goblet cells and Paneth cells), and Sox9-EGFP High (primarily EECs). We evaluated mRNA expression profiles by next-generation high-throughput RNA-sequencing in FACS purified Sox9-Low cells from germ-free (GF) and conventionalized (CV) mice. Overall design: To assess the effect of microbiota on the intestinal epithelial stem cells population, we used four pairs of female GF Sox9-EGFP littermates. One littermate from each pair was randomly selected at 8-10 weeks of age for conventionalization. Following a two-week conventionalization, the jejunal epithelial tissue from both the CV and GF littermates were harvested and IECs were sorted by FACS. RNA was isolated from the four sorted populations from each animal, as well as from non-sorted (NS) IECs, and subject to small RNA sequencing. Additionally, Sox9-Low samples were profiled for mRNAs using mRNA-seq. Reads were aligned to the mouse genome and quantified using Salmon followed by edgeR. To avoid noise introduced by lowly expressed transcripts, we analyzed only robustly expressed transcripts defined as those with an expression of at least 10 counts per million (CPM).
Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status.
Sex, Specimen part, Cell line, Subject
View Samples