Oocyte maturation, fertilization, and early embryonic development occur in the absence of gene transcription. Therefore, it is critical to understand at a global level the post-transcriptional events that are driving these transitions. Here, we have used a systems approach by combining polysome mRNA profiling and bioinformatics to identify RNA binding motifs in mRNAs that either enter or exit the polysome pool during mouse oocyte maturation. Association of mRNA with the polysomes correlates with active translation.
Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition.
Specimen part
View SamplesMale germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites. Overall design: RNA-Seq data for purified spermatocytes and spermatids isolated from Sam68+/+ and Sam68-/- mice.
Functional Interaction between U1snRNP and Sam68 Insures Proper 3' End Pre-mRNA Processing during Germ Cell Differentiation.
Specimen part, Cell line, Subject
View SamplesAllergic asthma and rhinitis are two common chronic allergic diseases that affect the lungs and nose, respectively. Both diseases share clinical and pathological features characteristic of excessive allergen-induced type 2 inflammation, orchestrated by memory CD4+ T cells that produce type 2 cytokines (TH2 cells). However, a large majority of subjects with allergic rhinitis do not develop asthma, suggesting divergence in disease mechanisms. Since TH2 cells play a pathogenic role in both these diseases and are also present in healthy non-allergic subjects, we performed global transcriptional profiling to determine whether there are qualitative differences in TH2 cells from subjects with allergic asthma, rhinitis and healthy controls. TH2 cells from asthmatic subjects expressed higher levels of several genes that promote their survival as well as alter their metabolic pathways to favor persistence at sites of allergic inflammation. In addition, genes that enhanced TH2 polarization and TH2 cytokine production were also upregulated in asthma. Several genes that oppose T cell activation were downregulated in asthma, suggesting enhanced activation potential of TH2 cells from asthmatic subjects. Many novel genes with poorly defined functions were also differentially expressed in asthma. Thus, our transcriptomic analysis of circulating TH2 cells has identified several molecules that are likely to confer pathogenic features to TH2 cells that are either unique or common to both asthma and rhinitis. Overall design: RNA-sequencing of circulating TH2 cells isolated from a cohort of patients with allergic rhinitis (25), asthma (40) patients and healthy non allergic subjects (15). Cells were directly isolated from blood by flow cytometry. Total RNA was extracted, messenger RNA was selected and cDNA was amplified linearly with a PCR based method (Picelli et al. 2014). Libraries were prepared using the NexteraXT Illumina sequencing platform.
Transcriptional Profiling of Th2 Cells Identifies Pathogenic Features Associated with Asthma.
No sample metadata fields
View SamplesDirect cell reprogramming has enabled the direct conversion of skin fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell lineage-specific transcription factors. This approach has substantial advantages since it is rapid and simple, generating the cell type of interest in a single step. However, it remains unknown whether this technology can be applied for directly reprogramming skin cells into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB and SOX9 to be sufficient to convert with high efficiency embryonic and post-natal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications.
Direct conversion of fibroblasts into functional astrocytes by defined transcription factors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Specimen part
View SamplesThe role of the transcription factor EB (TFEB) in the control of cellular functions, including in vascular bed, is mostly thought to be the regulation of lysosomal biogenesis and autophagic flux. While this is its best-known function, we report here the ability of TFEB to orchestrate a non-canonical program involved in the control of cell-cycle and VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB deletion halts proliferation by inhibiting the CDK4/Rb pathway, which regulates the cell cycle G1-S transition. In an attempt to overcome this limit, cells compensate by increasing the amount of VEGFR2 on the plasma membrane through a microRNA-mediated mechanism and the control of its membrane trafficking. TFEB transactivates the miR-15a/16-1 cluster, which limits the stability of the VEGFR2 transcript, and negatively modulates the expression of MYO1C, which regulates VEGFR2 delivery to the cell surface. In TFEB knocked-down cells, the reduced and increased amount respectively of miR-15a/16-1 and MYO1C result in the overexpression on plasmamembrane of VEGFR2, which however shows low signaling strength. Using endothelial loss-of-function Tfeb mouse mutants, we present evidence of defects in fetal and newborn mouse vasculature caused by the reduced endothelial proliferation and by the anomalous function of VEGFR2 pathway. Thus, this study revealed a new and unreported function of TFEB that expands its role beyond the regulation of autophagic pathway in the vascular system.
TFEB controls vascular development by regulating the proliferation of endothelial cells.
Cell line
View SamplesExpression data from Ppara (peroxisome proliferator activated receptor alpha) KO mice injected with TFEB specifically in liver. In order to identify the effects of TFEB overexpression together with Ppara absence on the liver transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the injected mice
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Specimen part
View SamplesIn order to identify the effects of TFEB overexpression on the liver transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the injected mice
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Specimen part
View SamplesIn order to identify the effects of starvation on the liver transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the starved mice
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Specimen part, Treatment
View SamplesIn order to identify the effects of transcription factor EB (TFEB) overexpression on the liver transcriptome, we performed Affymetrix GeneChip hybridization experiments on injected mice overexpressing TFEB specifically in the liver.
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
Age, Specimen part, Treatment
View Samples