This SuperSeries is composed of the SubSeries listed below.
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type germinating conidia (WT_GC) or PrtT protease deficient mutant conidia (PrtT-GC) or inert acrylic 2-4 micron beads (Beads) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type culture filtrate (WT-CF) or PrtT protease deficient mutant culture filtrate (PrtT-CF) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus germinating conidia (WT-GC) or culture filtrate (WT-CF) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesMicroarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer.
Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers.
Specimen part
View SamplesCortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we report here the first large-scale identification of Mediator kinase substrates in human cells (HCT116). Among over 16,000 quantified phosphosites, we identified 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-Seq data correlated with Mediator kinase targets, CA effects on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, which tracked about 7,000 proteins across six time points (0 – 24h), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation; contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest cellular roles beyond transcription, including metabolism and DNA repair. Overall design: HCT116 cells were treated with either 100nM CA or DMSO in biological triplicate for each population (6 samples total). Treatment was for 24h for compound and vehicle.
Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.
No sample metadata fields
View SamplesUsing gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes.
p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways.
Cell line
View SamplesLow back pain (LBP) is one of the most prevalent conditions which need medical advice and result in chronic disabilities. Degenerative disc disease (DDD) is a common reason for LBP. A lot of researchers think that CEP degeneration play critical roles in the initiation and development of DDD. In recent years, researchers have put interests on cell-based therapies for regenerating disc structure and function. Our research team has isolated cartilage endplate-derived stem cells (CESCs) and validated their chondrogenic and osteogenic differentiation ability. Enhanced chondrogenic differentiation and inhibited osteogenic differentiation of CESCs may retard CEP calcification and restore the nutrition supply, possibly regenerating the degenerated discs.
Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells.
Specimen part
View SamplesThe emergence of fully antimicrobial resistant Neisseria gonorrhoeae has led global public health agencies to identify a critical need for next generation anti-gonococcal pharmaceuticals. The development and success of these compounds will rely upon valid pre-clinical models of gonorrhoeae infection. We recently developed and reported the first model of upper genital tract gonococcal infection. During initial characterization, we observed significant reproductive cycle-based variation in infection outcome. When uterine infection occurred in the diestrus phase, there was significantly greater pathology than during estrus phase. The aim of this study was to evaluate transcriptional profiles of infected uterine tissue from mice in either estrus or diestrus phase in order to elucidate possible mechanisms for these differences. Genes and biological pathways with phase-independent induction during infection showed a chemokine dominant cytokine response to Neisseria gonorrhoeae. Despite general induction being phase-independent, this common anti-gonococcal response demonstrated greater induction during diestrus phase infection. Greater activity of granulocyte adhesion and diapedesis regulators during diestrus infection, particularly in chemokines and diapedesis regulators, was also shown. In addition to a greater induction of the common anti-gonococcal response, Gene Set Enrichment Analysis (GSEA) identified a diestrus-specific induction of type-1 interferon signaling pathways. This transcriptional analysis of murine uterine gonococcal infection during distinct points in the natural reproductive cycle provided evidence for a common anti-gonococcal response characterized by significant induction of granulocyte chemokine expression and high proinflammatory mediators. The basic biology of this host response to N. gonorrhoeae in estrus and diestrus is similar at the pathway level, but varies drastically in magnitude. Overlaying this, we observed type-1 interferon induction specifically in diestrus infection where greater pathology is observed. This supports recent work suggesting this pathway has a significant, possibly host-detrimental, function in gonococcal infection. Together these findings lay the groundwork for further examination of the role of interferons in gonococcal infection. Additionally, this work enables the implementation of the diestrus uterine infection model using the newly characterized host response as a marker of pathology and its prevention as a correlate of candidate vaccine efficacy and ability to protect against the devastating consequences of N. gonorrhoeae-associated sequelae.
Murine host response to Neisseria gonorrhoeae upper genital tract infection reveals a common transcriptional signature, plus distinct inflammatory responses that vary between reproductive cycle phases.
Specimen part, Treatment
View SamplesBacteria respond to osmotic stress by a substantial increase in the intracellular osmolality, adjusting their cell turgor for altered growth conditions. Using E. coli as a model organism we demonstrate here that bacterial responses to hyperosmotic stress specifically depend on the nature of osmoticum used. We show that increasing acute hyperosmotic NaCl stress above ~1.0 Os kg-1 causes a dose-dependent K+ leak from the cell, resulting in a substantial decrease in cytosolic K+ content and a concurrent accumulation of Na+ in the cell. At the same time, isotonic sucrose or mannitol treatment (non-ionic osmotica) results in a gradual increase of the net K+ uptake. Ion flux data is consistent with growth experiments showing that bacterial growth is impaired by NaCl at the concentration resulting in a switch from net K+ uptake to efflux. Microarray experiments reveal that about 40% of up-regulated genes shared no similarity in their responses to NaCl and sucrose treatment, further suggesting specificity of osmotic adjustment in E. coli to ionic- and non-ionic osmotica The observed differences are explained by the specificity of the stress-induced changes in the membrane potential of bacterial cells highlighting the importance of voltage-gated K+ transporters for bacterial adaptation to hyperosmotic stress.
Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica.
No sample metadata fields
View Samples