To examine the effect of seminal fluid on the whole genome expression profile of endometrial tissue following mating, RNA was extracted from endometrial tissue collected 8 h after CBAF1 females were mated with intact Balb/c males and compared to RNA from endometrial tissue of females mated with seminal fluid deficient SVX/VAS Balb/c males. This comparison controlled for ovarian hormone status, exposure to the male and mating activity, and the neuroendocrine response to cervical and vaginal stimulus at mating, so that changes in endometrial gene expression could be attributed specifically to contact with seminal fluid. The endometrial RNA from n=16 individual females was pooled into four independent biological replicates per treatment group (n=4 endometrial samples per replicate) and expression profiles were analyzed by Affymetrix microarray. Seminal fluid exposure induced a clear difference in the profile of genes expressed in the endometrium with a total of 335 genes were differentially regulated with a fold-change greater than 1.5 and p<0.05. Of these, 190 genes were upregulated and 145 genes were downregulated following contact with seminal fluid. Bioinformatics analysis revealed TLR4 signaling as a strongly predicted upstream regulator activated by the differentially expressed genes.Additional experiments confirmed the role of TLR4 with the absence of TLR4 in TLR4 null mice resulting in a failure for seminal fluid to induce endometrial Csf3, Cxcl2, Il6 and Tnf expression. This study provides evidence that TLR4 contributes to seminal fluid modulation of the periconception immune environment. Activation of TLR4 signaling by microbial or endogenous components of seminal fluid is thus implicated as a key element of the female tract response to seminal fluid at the outset of pregnancy in mice.
TLR4 Signaling Is a Major Mediator of the Female Tract Response to Seminal Fluid in Mice.
Sex, Specimen part, Time
View SamplesIn mice, seminal fluid elicits an inflammation-like response in the female genital tract that activates immune adaptations to advance the likelihood of conception and pregnancy. Here we examined whether similar changes in leukocyte and cytokine parameters occur in the human cervix in response to the male partners seminal fluid. After a period of abstinence in proven-fertile women, duplicate sets of biopsies were taken from the ectocervix in the peri-ovulatory period and again 48 h later, 12 h after unprotected vaginal coitus, vaginal coitus with use of a condom, or no coitus. One pair of first biopsy and second biopsy RNA samples from each treatment group were reverse transcribed into cDNA and hybridized to Affymetrix Human Gene 1.0 ST arrays. A total of 713 probe sets were identified as differentially expressed (fold change >2) between first and second biopsies after unprotected coitus, with 436 genes upregulated and 277 genes downregulated. Ingenuity Pathway Analysis revealed that gene pathways including inflammatory response, immune response, immune cell trafficking, cellular movement and antigen presentation were significantly affected by seminal fluid exposure. Amongst these were genes encoding several chemokines which target granulocytes, monocyte/macrophages, dendritic cells and lymphocytes, proinflammatory cytokines and regulators of cytokine synthesis, prostaglandin pathway gene including PTGS2; COX-2) and several matrix metalloproteinases (MMPs). Of these genes, no change or a substantially smaller change was seen between first and second biopsies obtained after coitus with condom use, or abstinence. An increase in CSF2, IL6, IL8 and IL1A expression was confirmed by qRT-PCR in larger sets of duplicate biopsies (n=6-7 per group). We conclude that seminal fluid introduced at intercourse elicits expression of pro-inflammatory cytokines and chemokines which underpins the accompanying recruitment of macrophages, dendritic cells and memory T cells. The leukocyte and cytokine environment induced in the cervix by seminal fluid appears competent to initiate adaptations in the female immune response that promote fertility. This response is also relevant to transmission of sexually transmitted pathogens, and potentially susceptibility to cervical metaplasia.
Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus.
Treatment
View SamplesIn this study we examined the influence of seminal plasma on gene expression in human Ect1 ectocervical epithelial cells, and the extent to which recombinant TGF3 elicits comparable changes. Ect1 cells were incubated with recombinant human TGF3 (5 ng/ml), 10% pooled human seminal plasma (v/v), or medium alone for 10h. RNA was reverse transcribed into cDNA and hybridized to Affymetrix GeneChip Human Genome U133 plus 2.0 microarrays (Affymetrix, Santa Clara, CA). Exposure of Ect1 cells to seminal plasma resulted in differential expression of a total of 3955 probe sets, identified using high stringency criteria with MAS 5.0 analysis. These corresponded to 1338 genes up-regulated and 1343 genes down-regulated by seminal plasma. TGF3 treatment of Ect1 cells resulted in differential expression of 884 probe sets, corresponding to 346 up-regulated genes and 229 down-regulated genes. The genes differentially regulated by seminal plasma included several genes associated with cytokinecytokine receptor interaction, TGF signalling, JAK/STAT signalling or VEGF signalling pathways, as specified by the KEGG database. Of 47 genes in these families, 17 (36.1%) were similarly regulated by both seminal plasma and TGF3. These data, together with additional experiments showing all three TGF isoforms can regulate inflammatory cytokine expression in Ect1 cells, identify TGF isoforms as key agents in seminal plasma that signal induction of pro-inflammatory cytokine synthesis in cervical cells.
TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells.
Cell line, Treatment
View SamplesGenetically engineering Arabidopsis thaliana to express Isoprene Synthase (ISPS) leads to changes in expression of genes assoiated with many growth regulator signaling pathways and signaling networks involved in abiotic and biotic stress responses. Overall design: Arabidopsis thaliana transformed with a Eucalyptus globulus ISPS (line B2) and a line transformed with empty vector DNA (EV-B3), grown under unstressed growth conditions were subjected to RNA-Seq
Isoprene Acts as a Signaling Molecule in Gene Networks Important for Stress Responses and Plant Growth.
No sample metadata fields
View SamplesTo determine the effect on gene expression of intratumoral injection of the Toll-like receptor agonist CpG1826. MC38 colon cancer cells were injected subcutaneously into C57BL/6 mice and allowed to establish until ~40 mm2.
Toll-Like Receptor Triggering and T-Cell Costimulation Induce Potent Antitumor Immunity in Mice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type germinating conidia (WT_GC) or PrtT protease deficient mutant conidia (PrtT-GC) or inert acrylic 2-4 micron beads (Beads) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type culture filtrate (WT-CF) or PrtT protease deficient mutant culture filtrate (PrtT-CF) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus germinating conidia (WT-GC) or culture filtrate (WT-CF) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesMicroarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer.
Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers.
Specimen part
View Samples