In this study, we analyzed the impact of a mutation in the wrn-1 gene compared to wild type worms and the dietary supplementation of vitamin C on the global mRNA expression of the whole C. elegans by the RNA-seq technology. Overall design: Whole C. elegans mRNA profiles at the L4 stage of wild type and wrn-1(gk99) mutant animals treated with or without 10 mM ascorbate were generated by deep sequencing, in triplicate, using the HiSeq 2000 machine form Illumina. Detailed statistics on the quality of the reads were calculated with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 50 base pairs raw sequences were aligned on the C. elegans ce10/W220 genome with TopHat using the Ensembl annotations provided with the Illumina iGenomes. The htseq-count software (http://www-huber.embl.de/users/anders/HTSeq) was used to count the number of reads aligned to each gene. These counts were then normalized relative to the sequencing depth with DESeq.
Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span.
Specimen part, Treatment, Subject
View SamplesWe examined patterns of gene expression in two independent colonies of both M and S molecular forms of Anopheles gambiae at each of three developmental stages of interest: late larvae, sugar-fed virgin females, and gravid females. For each colony, replicates were derived from independent RNA samples extracted from different cohorts to ensure that trends were reproducible. In addition, each replicate was derived from larvae (adults) drawn from three pans (cages) to minimize the contribution of any individual pan to variation between samples. Data were obtained from a total of five biological replicates per mosquito colony.
Differential gene expression in incipient species of Anopheles gambiae.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Function, targets, and evolution of Caenorhabditis elegans piRNAs.
Specimen part
View SamplesArgonaute (Ago) proteins associate with microRNAs (miRNAs), which guide them to complementary target mRNAs resulting in gene silencing.
Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing <i>in vivo</i>.
Cell line
View SamplesRIP-chip-SRM : a New Combinatorial Large Scale Approach Identifies a Set of Translationally Regulated bantam/miR 58 Targets in C. elegans
RIP-chip-SRM--a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans.
Specimen part
View SamplesTo discover new miRNA targets, we generated a C.elegans transgenic line expressing a functional N-terminally Tandem Affinity Purification (TAP) tagged ALG-1 protein (C. elegans strain WS4303). We crossed the TAP::ALG-1 transgene into the mir-58(n4640) mutant background to generate the strain WS5041. For simplicity, we will hereafter term the TAP::ALG-1 transgenic animals as wild typeand the transgenic WS5041 animals as mir-58.
RIP-chip-SRM--a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans.
Specimen part
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 AML
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 B-ALL
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of several AML cell lines
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of normal cells (CD34+) from different donors
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View Samples