RNA-seq Identification of a Novel Fusion Gene in a Mesenchymal Tumor
Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors.
No sample metadata fields
View SamplesBone marrow mesenchymal stem cells (MSC) were adipogenically differentiated followed by dedifferentiation. We are interested to know the new fat markers, adipogenic signaling pathways and dedifferentiation signaling pathways.Furthermore we are also intrested to know that how differentiated cells convert into dedifferentiated progenitor cells. To address these questions, MSC were adipogenically differentiated, followed by dedifferentiation. Finally these dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated, adipogenically differentiated and dedifferentiated cells were performed. Regarding the conversion of adipogenically differentiated cells into dedifferentiated cells, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes play a curcial role in cell cycle to drive the adipogenically differentiated cells towards an arrested state to narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these cell cycle genes motivates dedifferentiation of adipogenically differentiated cells to reverse the arrested state. We also found new fat markers along with signaling pathways for adipogenically differentiated and dedifferentiated cells, and also observed the influencing role of proliferation associated genes in cell cycle arrest and progression.
Transdifferentiation of adipogenically differentiated cells into osteogenically or chondrogenically differentiated cells: phenotype switching via dedifferentiation.
Specimen part
View SamplesAutologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT.
Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation.
Specimen part
View SamplesRheumatoid arthritis (RA) leads to progressive destruction of articular structures. Despite recent progress in controlling inflammation and pain, little cartilage repair has yet been observed. This in vitro study aims to determine the role of chondrocytes in RA-related cartilage destruction and antirheumatic drug-related regenerative processes. Human chondrocytes were three-dimensionally cultured in alginate beads. To determine the RA-induced gene expression pattern, human chondrocytes were stimulated with supernatant of RA synovial fibroblasts (RASF) and normal donor synovial fibroblasts (NDSF), respectively. To examine antirheumatic drug response signatures, human chondrocytes were stimulated with supernatant of RASF that have been treated with disease-modifying antirheumatic drugs (DMARD; azathioprine, sodium aurothiomalate, chloroquine phosphate, methotrexate), non-steroidal anti-inflammatory drugs (NSAID; piroxicam, diclofenac) or steroidal anti-inflammatory drugs (SAID; methylprednisolone, prednisolone). Genome-wide expression profiling with oligonucleotide microarrays was used to determine differentially expressed genes. Real-time RT-PCR and ELISA were performed for validation of microarray data. Following antirheumatic treatment, microarray analysis disclosed a reverted expression of 94 RA-induced chondrocyte genes involved in inflammation/NF-B signalling, cytokine/chemokine activity, immune response, proliferation/differentiation and matrix remodelling. Hierarchical clustering analysis showed that treatment of RASF with the DMARD azathioprine, gold sodium thiomalate and methotrexate resulted in chondrocyte gene expression signatures that were closely related to the healthy pattern. Treatment with the SAID methylprednisolone and prednisolone strongly reverted the RA-related chondrocyte gene expression, in particular the expression of genes involved in inflammation/NF-B and cytokine/chemokine activity. The NSAID piroxicam and diclofenac and the DMARD chloroquine phosphate had only moderate to marginal effects. Pathway analysis determined major mechanisms of drug action, for example pathways of cytokine-cytokine receptor interaction, TGF-/TLR/Jak-STAT signalling and ECM-receptor interaction were targeted. This in vitro study provides a comprehensive molecular insight into the antirheumatic drug response signatures in human chondrocytes, thereby revealing potential molecular targets, pathways and mechanisms of drug action involved in chondrocyte regeneration. Thus, the present study may contribute to the development of novel therapeutic chondro-protective compounds and strategies.
Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration.
No sample metadata fields
View SamplesWe have studied the expression profile of 3D cultured human chondrocytes that were stimulated with supernatant of synovial fibroblasts derived from a RA patient (RASF=HSE cell line) and from a normal donor (NDSF=K4IM cell line), respectively. For this purpose, passage 2 human chondrocytes were cultured for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatant of RASF and NDSF. Baseline expression was determined of unstimulated chondrocytes. Differential genome-wide microarray analysis of RASF and NDSF stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (COX-2), NF-kappa B signaling pathway (TLR2), cytokines/chemokines and receptors (CXCL1-3, CCL20, CXCL8, CXCR4, IL-6, IL-1beta), matrix degradation (MMP-10, MMP-12) and suppressed matrix synthesis (COMP). Thus, transcriptome profiling of RASF and NDSF stimulated chondrocytes revealed a disturbed catabolic-anabolic homeostasis of chondrocyte function. This study provides a comprehensive insight into the molecular regulatory processes induced in human chondrocytes during RA-related cartilage destruction.
Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study.
No sample metadata fields
View SamplesThe molecular mechanism regulating phasic corticotropin-releasing hormone (CRH) release from parvocellular neurons (PVN) remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin’s Ca2+ sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Overall design: single cells from the PVN region juvenile (21-28 days) mice were dissected and subject to whole transcriptome analysis
A secretagogin locus of the mammalian hypothalamus controls stress hormone release.
No sample metadata fields
View SamplesAlterations to corticostriatal glutamatergic function are early pathophysiological changes associated with Huntington?s disease (HD). The factors that regulate the maintenance of corticostriatal glutamatergic synapses post-developmentally are not well understood. Recently, the striatum-enriched transcription factor Foxp2 was implicated in the development of these synapses. Here we show that, in mice, overexpression of Foxp2 in the adult striatum of two models of HD leads to rescue of HD-associated behaviors, while knockdown of Foxp2 in wild-type mice leads to development of HD-associated behaviors. We note that Foxp2 encodes the longest polyglutamine repeat protein in the human reference genome, and we show that it can be sequestered into aggregates with polyglutamine-expanded mutant Huntingtin protein (mHTT). Foxp2 overexpression in HD model mice leads to altered expression of several genes associated with synaptic function, genes which present new targets for normalization of corticostriatal dysfunction in HD. Overall design: 4 mice per group of each: Con+Con, Con+Foxp2, BACHD+Con, BACHD+Foxp2 Foxp2 or Control virus was injected into BACHD and Control mice, mRNA was isolated and sequenced
Control of Huntington's Disease-Associated Phenotypes by the Striatum-Enriched Transcription Factor Foxp2.
Specimen part, Subject
View SamplesThe development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
Specimen part, Cell line, Subject
View SamplesTumor progression is associated with an immunosuppressive microenvironment that consists of several elements, such as regulatory T cells, type 2 macrophages and myeloid-derived suppressor cells. Here, we identify for the first time a BDCA1+CD14+ population of immunosuppressive cells that resides both in the blood and tumor of melanoma patients. We demonstrated that the presence of these cells in dendritic cell (DC)-based anti-tumor vaccines significantly suppresses CD4+ T cells in an antigen-specific manner. In an attempt to reveal the mechanism of this suppressive activity, we noticed that BDCA1+CD14+ cells express elevated levels of the check-point molecule PD-L1, which thereby hinders T cell proliferation. Importantly, although this suppressive BDCA1+CD14+ population expresses markers of both BDCA1+ DCs and monocytes, functional, transcriptome and proteome analyses clearly revealed that they comprise a unique population of cells that is exploited by tumors to evade immunity. Thus, targeting these cells may improve the efficacy of cancer immunotherapy. Overall design: mRNA profiles of BDCA1+ DCs, BDCA1+CD14+ cells and monocytes, isolated from 3 healthy volunteers, were generated by deep RNA sequencing using HiSeq 2000 System (TruSeq SBS KIT-HS V3,Illumina)
Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines.
No sample metadata fields
View SamplesFollowing Treg ablation in the BDC/NOD.Foxp3-DTR strain, NK cells produce IFNg and accumulate to higher percentage and number. We explored the signature pathways responsible for this phenomenon using microarray prolifing and comparison to other activation signatures.
Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2.
Sex, Age, Specimen part
View Samples