Tuberculosis Immune Reconstitution Inflammatory Syndrome (TB-IRIS) frequently complicates combined anti-retroviral therapy (ART) and anti-tubercular therapy in HIV-1 co-infected tuberculosis (TB) patients. The immunopathological mechanism underlying TB-IRIS is incompletely defined.
Cytotoxic mediators in paradoxical HIV-tuberculosis immune reconstitution inflammatory syndrome.
Specimen part, Subject
View SamplesCoMet, a fully automated Computational Metabolomics method to predict changes in metabolite levels in cancer cells compared to normal references has been developed and applied to Jurkat T leukemia cells with the goal of testing the following hypothesis: up or down regulation in cancer cells of the expression of genes encoding for metabolic enzymes leads to changes in intracellular metabolite concentrations that contribute to disease progression. Nine metabolites predicted to be lowered in Jurkat cells with respect to normal lymphoblasts were examined: riboflavin, tryptamine, 3-sulfino-L-alanine, menaquinone, dehydroepiandrosterone, -hydroxystearic acid, hydroxyacetone, seleno-L-methionine and 5,6-dimethylbenzimidazole. All, alone or in combination, exhibited antiproliferative activity. Of eleven metabolites predicted to be increased or unchanged in Jurkat cells, only two (bilirubin and androsterone) exhibited significant antiproliferative activity. These results suggest that cancer cell metabolism may be regulated to reduce the intracellular concentration of certain antiproliferative metabolites, resulting in uninhibited cellular growth and have the implication that many other endogenous metabolites with important roles in carcinogenesis are awaiting discovery.
Identification of metabolites with anticancer properties by computational metabolomics.
No sample metadata fields
View SamplesGenome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with diseases of the colon including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). However, the functional role of many of these SNPs is largely unknown and tissue-specific resources are lacking. Expression quantitative trait loci (eQTL) mapping identifies target genes of disease-associated SNPs. Here, we comprehensively map eQTLs in the human colon, assess their relevance for GWAS of colonic diseases and provide functional characterization.
Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci.
Sex, Specimen part
View SamplesAtopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. The goal of this study was to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared to skin from healthy controls and from lesional psoriasis skin. The aim was to identify differentially expressed genes involved in skin barrier formation and inflammation, and to compare our results with those reported for patients with moderate and severe AD.
Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis.
Specimen part, Disease
View SamplesWe aimed to determine the infect of Ascaris suum infection on mucosal immune pathways in pigs
Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro.
Specimen part
View SamplesThe goal of the study was to identify genes whose aberrant expression can contribute to diabetic retinopathy. We determined differential response in gene expression to high glucose in lymphoblastoid cell lines derived from matched type 1 diabetic individuals with and without retinopathy. Those genes exhibiting the largest difference in glucose response between diabetic subjects with and without retinopathy were assessed for association to diabetic retinopathy utilizing genotype data from a meta-genome-wide association study. All genetic variants associated with gene expression (expression QTLs; eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the glucose response gene eQTLs among small association p-values for diabetic retinopathy. Among these, we identified FLCN as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose is greater in individuals with diabetic retinopathy compared to diabetic individuals without retinopathy. Three large, independent cohorts of diabetic individuals revealed an enhanced association of FLCN eQTL to diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy in diabetic individuals. Together, our studies integrating genetic association and gene expression implicate FLCN as a disease gene in diabetic retinopathy.
Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes.
Cell line
View SamplesThe present study reports an unbiased analysis of the genetic profile and regulation of NKG2D expressing CD4 T-cells.An Affymetrix microarray analysis was used to explore the genetic profile of NKG2D+ versus NKG2D- CD4 T-cells. The genetic profile was studied by single gene analysis and gene set enrichment analysis. I found that several immune regulatory receptors was regulated differently in NKG2D+ versus NKG2D- CD4 T-cells. Futhermore, I found that NKG2D+ CD4 T-cells display a genetic profile of cytotoxic T-cells. The gene set enrichment analysis revealed a change in 19 processes, including ARF GTPase activator activity; RNA splicing; Signal transduction; Interspecies interaction between organisms; Regulation of ARF GTPase activity; Cell motility; Mitosis; Cell cycle; Anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process; Induction of apoptosis by extracellular signals; Negative regulation of apoptosis; mRNA export from nucleus; Positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; Cell division; Protein polymerization; Spliceosome assembly; Microtubule-based movement; Immune response; mRNA processing.
Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.
Cell line, Treatment
View SamplesMultiple Endocrine Neoplasia Tumor Syndrome type 1 (MEN 1) is an autosomal dominant tumor syndrome affecting individuals with a heterozygous germline mutaion of the MEN1 gene. MEN 1 carriers commonly develop parathyroid, anterior pituitary, duodenal and pancreatic endocrine tumors. The phenotype of existing mouse models for the MEN 1 syndrome, with a germline heterozygous (hz) Men1 gene inactivation, show close resemblance to the human MEN 1 syndrome. Menin, the protein encoded for by the MEN1/Men1 gene, lacks homology with known proteins, and evidence of its involvement in different cellular processes is steadily growing. Several interaction partners have been identified, involving different interaction sites on the menin protein. Accumulating evidence suggests a role for menin in transcriptional regulation, cell cycle control, apoptosis, chromatin modification and DNA damage response and repair. Loss of heterozygosity (LOH) of the MEN1 gene precedes tumor formation in the MEN 1 heterozygous pancreas. We set out to determine if there is a change in gene expression early on in the hz islet, as compared with islets in wildtype (wt) littermates, long before the LOH events occur. We performed a global mRNA expression microarray on islets from young, five-week-old, hz Men1 mice and their wt littermates, and we have subsequently corroborated a subset of the findings on the qPCR and protein level.
Accelerated proliferation and differential global gene expression in pancreatic islets of five-week-old heterozygous Men1 mice: Men1 is a haploinsufficient suppressor.
Sex, Age, Specimen part
View SamplesDNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumors, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel results suggest that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.
Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.
Cell line, Treatment
View Samples