The widespread use of wireless devices during the last decades is rising the concern about the adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Studies are targeting on unrevealing the underlying mechanisms of RF-EMR action. The contribution of the omics high throughput approaches is a prerequisite towards this direction. In the present work, C57BL/6 adult male mice were sham-exposed (nSE=8) or whole-body exposed (nExp=8) for 2h to GSM 1800 MHz mobile phone radiation at 11 V/m average electric field intensity, and the RF-EMR effects on the hippocampal lipidome and transcriptome profile were evaluated. The data analysis of the phospholipids fatty acid residues revealed that the levels of six fatty acids (16:0, 16:1 6+7c, 18:1 9c, 20:5 w3, SFA, MUFA) were significantly altered (p<0.05) in the exposed group. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p<0.05) between the two groups with a fold change cut off of 1.5. In general, the observed changes point out the attention to a membrane remodeling response of the tissue phospholipids after non-ionizing radiation exposure, reducing the Saturated Fatty Acids (SFA) and EPA omega-3 (20:5 w3) and increasing Monounsaturated Fatty Acids (MUFA) residues and in parallel reflect an impact to genes implicated in critical biological processes, as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism and cancer
Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study.
Specimen part
View Samples17b-Estradiol added to MEL cells expressing Gata1-ER or PU.1-ER transgenes to stimulate either erythropoietic Gata-1 dependent or myeloid PU.1 dependent gene espression in different time points
PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation.
Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3-9.
Specimen part
View SamplesIndicated cells were subjected to RNAi against linker histone H1, Nautilus (control), or GFP (control). RNA was isolated and subjected to Affymetrix GeneChIP Drosophila Genome 2.0 arrays
Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3-9.
Specimen part
View SamplesSalivary glands or larval ovaries were isolated from transgenic flies expressing RNAi targeting Nautilus (control) or linker histone H1 using a Tub-Gal4 driver. Overall design: ~200 larvae were used to isolate salivary glands or ovaries, independently. Total RNA was isolated using Trizol reagent following manufacturer''s guidelines. Then 5 µg of total RNA was separated on a polyacrylamide gel, and 18-29 nt small RNAs were isolated for cloning.
Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3-9.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.
Specimen part, Cell line
View SamplesWe compared the transcriptomes of differentiating cultures of ES cell derived erythroid progentor cells (ES-EP) and murine erythroleukemia (MEL) cells stably transfected with GATA-1 fused to ER.
A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.
Specimen part, Cell line
View SamplesAtopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. The goal of this study was to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared to skin from healthy controls and from lesional psoriasis skin. The aim was to identify differentially expressed genes involved in skin barrier formation and inflammation, and to compare our results with those reported for patients with moderate and severe AD.
Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1.
Specimen part
View SamplesWe compared the transcriptomes of ES cell derived erythroid progentor cells (ES-EP) and murine erythroleukemia (MEL) cells stably transfected with Gata-1 fused to ER.
A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1.
Specimen part
View Samples