REST is a master regulator of genes that are involved in the acqusition of neuronal fate. The role of REST is not well understood so we attempted to investigate the role of REST in the development of neural cells by analysing the genes that are upregulated when REST is knocked down via shRNA
REST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells.
Specimen part
View SamplesNeonates are intrinsically defective at creating memory CD8+ T cells in response to infection with intracellular pathogens. Here we investigated differential of small RNAs, transcription factors, and chemokine receptors regulation in neonates as compared to adults before and during infection. We found that prior to infection, na誰ve cells have a different expression profile for many microRNAs, and gene targets of these microRNAs show widespread expression differences. These targets and other changes in gene expression in na誰ve cells result in neonatal cells that get activated more easily, express chemokine receptors that home to sites of infection, and are less protected from apoptosis during contraction. As a result, changes in neonatal na誰ve cells drive effector cell terminal differentiation at the expense of creating long-lived memory cells. Overall design: total RNAs were sequenced from adult and neonatal CD8+ T cells before and during infection
MicroRNAs and Their Targets Are Differentially Regulated in Adult and Neonatal Mouse CD8+ T Cells.
No sample metadata fields
View SamplesNeonates are intrinsically defective at creating memory CD8+ T cells in response to infection with intracellular pathogens. Here we investigated differential of small RNAs, transcription factors, and chemokine receptors regulation in neonates as compared to adults before and during infection. We found that prior to infection, na誰ve cells have a different expression profile for many microRNAs, and gene targets of these microRNAs show widespread expression differences. These targets and other changes in gene expression in na誰ve cells result in neonatal cells that get activated more easily, express chemokine receptors that home to sites of infection, and are less protected from apoptosis during contraction. As a result, changes in neonatal na誰ve cells drive effector cell terminal differentiation at the expense of creating long-lived memory cells. Overall design: PolyA RNA was selected and sequenced from adult and neonatal CD8+ T cells before and during infection
MicroRNAs and Their Targets Are Differentially Regulated in Adult and Neonatal Mouse CD8+ T Cells.
No sample metadata fields
View SamplesThe N-terminal tail of histone H2A shows evolutionary changes that parallel genome size and aid chromatin compaction. As genome size increases, so does the number of arginines. In contrast, serines corellate with small genomes. Examples for such changes are arginine in position 11 and serine in position 15.
Evolution of histone 2A for chromatin compaction in eukaryotes.
No sample metadata fields
View SamplesTriplicate experiments from T98G cells under asynchronously growing, and growth arrest by serum deprivation and contact inhibition.
A common set of gene regulatory networks links metabolism and growth inhibition.
No sample metadata fields
View SamplesFicolled AML-M0 sample gene expression profiles on Affymetrix HGU133Plus2.0 GeneChips. Acute myeloid leukemia (AML) classified as FAB-M0 is defined as a subtype with minimally differentiated morphology. Here we investigated by gene expression (GEP) profiling whether AML-M0 cases should be considered as one or more unique molecular subgroups that discriminates them from other AML patients. By applying GEP and subsequent unsupervised analysis of 35 AML-M0 samples and 253 previously reported AML cases, we demonstrate that AML-M0 cases express a unique signature. Hematological transcription regulators such as CEBPA, CEBPD, PU.1 and ETV6 and the differentiation associated gene MPO appeared strongly down-regulated, in line with the very primitive state of this type of leukemia. Moreover, AML M0 cases appeared to have a strong positive correlation with a previously defined immature AML subgroup with adverse prognosis. AML-M0 leukemias frequently carry loss-of-function RUNX-1 mutation and unsupervised analyses revealed a striking distinction between cases with and without mutations. RUNX1 mutant AML-M0 samples showed a distinct up-regulation of B-cell-related genes, e.g. members of the B-cell receptor complex, transcriptions regulators RUNX3, ETS2, IRF8 or PRDM1 and major histocompatibility complex class II genes. Importantly, expression of one single gene, i.e. BLNK, enabled prediction of RUNX1 mutations in AML-M0 with high accuracy. We propose that RUNX1 mutations in this subgroup of AML cause lineage infidelity, leading to aberrant co-expression of myeloid and B-lymphoid genes in the same cells.
Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status.
Specimen part
View SamplesThyroid hormone is crucial for normal brain development. Thyroid hormone transporters control thyroid hormone homeostatis in brain. Mutations in the thyroid hormone transporter MCT8 result in a complex endocrine and neurological phenotype.
Transcriptional profiling of fibroblasts from patients with mutations in MCT8 and comparative analysis with the human brain transcriptome.
Specimen part
View SamplesHIV-1 nucleoside reverse transcriptase inhibitor (NRTI) use is associated with severe adverse events. However, the exact mechanisms behind their toxicity has not been fully understood. Mitochondrial dysfunction after chronic exposure to NRTIs has predominantly been assigned to mitochondrial polymerase-? inhibition by NRTIs. However, an increasing amount of data suggests that this is not the sole mechanism. Many NRTI induced adverse events have been linked to the incurrence of oxidative stress, although the causality of events leading to reactive oxygen species (ROS) production and their role in toxicity is unclear. In this study we show that short-term effects of these drugs, which are rarely discussed in the literature, include direct inhibition of the mitochondrial respiratory chain (MRC), decreased ATP levels and increased ROS production. Collectively these events affect fitness and longevity of C. elegans through mitohormetic signalling events. Furthermore, we demonstrate that these effects can be normalized by addition of the anti-oxidant N-acetylcysteine (NAC), which suggests that ROS likely influence the onset and severity of adverse events upon drug exposure. Overall design: RNA-seq on Caenorhabditis elegans exposed to DMSO, 3''-azido-3''-deoxythymidine (zidovudine or AZT), 2'',3''-didehydro-2'',3''-deoxythymidine (stavudine or d4T), 3''-deoxy-3''-fluorothymidine (alovudine or FLT) or untreated control after 24 or 72 hours of exposure.
Beyond the polymerase-γ theory: Production of ROS as a mode of NRTI-induced mitochondrial toxicity.
Specimen part, Subject
View SamplesClinical remission is apparent when laboratory markers of inflammation are normal and clinical symptoms are absent. However, sub-clinical inflammation can still be present. A detailed analysis of the immune status during this inactive state of disease may provide a useful tool to subcategorize patients with subclinical immune activation
Gene expression analysis of peripheral cells for subclassification of pediatric inflammatory bowel disease in remission.
Specimen part
View SamplesAberrant splice variants are involved in the initiation and/or progression of glial brain tumors. We therefore set out to identify splice variants that are differentially expressed between histological subgroups of gliomas. Splice variants were identified using a novel platform that profiles the expression of virtually all known and predicted exons present in the human genome. Exon-level expression profiling was performed on 26 glioblastomas, 22 oligodendrogliomas and 6 control brain samples. Our results demonstrate that Human Exon arrays can identify subgroups of gliomas based on their histological appearance and genetic aberrations. We next used our expression data to identify differentially expressed splice variants. In two independent approaches, we identified 49 and up to 459 exons that are differentially spliced between glioblastomas and oligodendrogliomas a subset of which (47% and 33%) were confirmed by RT-PCR. In addition, exon-level expression profiling also identified >700 novel exons. Expression of ~67% of these candidate novel exons was confirmed by RT-PCR. Our results indicate that exon-level expression profiling can be used to molecularly classify brain tumor subgroups, can identify differentially regulated splice variants and can identify novel exons. The splice variants identified by exon-level expression profiling may help to detect the genetic changes that cause or maintain gliomas and may serve as novel treatment targets.
Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays.
No sample metadata fields
View Samples