Novel approaches were used to generate the DNA sequence information for the rhesus GeneChip (2005). The purpose of this experiment was to test its reliability and validity of the rhesus macaque GeneChip across different tissues and centers.
Intercenter reliability and validity of the rhesus macaque GeneChip.
Specimen part, Cell line
View SamplesThe primary goal of this study was to compare the performances of Rhesus Macaque Genome Array and Human Genome U133 Plus 2.0 Array with respect to the detection of differential expressions when rhesus macaque RNA extracts were labeled and hybridized.
Large scale analysis of positional effects of single-base mismatches on microarray gene expression data.
Specimen part, Cell line
View SamplesIn mammals, extracellular miRNAs circulate in biofluids as stable entities that are secreted by normal and diseased tissues, and can enter cells and regulate gene expression. Drosophila melanogaster is a proven system for the study human diseases. They have an open circulatory system in which hemolymph (HL) circulates in direct contact with all internal organs, in a manner analogous to vertebrate blood plasma. Here we show using deep sequencing that Drosophila HL contains RNase resistant, circulating miRNAs (HL-miRNAs). Limited subsets of body tissue miRNAs (BT-miRNAs) accumulated in HL, suggesting they may be specifically released from cells or particularly stable in HL. Alternatively, they might arise from specific cells such as hemocytes, in intimate contact with HL. Young and old flies accumulated unique populations HL-miRNAs, suggesting their accumulation is responsive to the physiological status of the fly. These HL-miRNAs may function in flies similarly to the miRNAs circulating in mammalian biofluids. The discovery of these HL-miRNAs will provide a new venue for health and disease-related research in Drosophila. Overall design: Examination of mRNA levels in body tissues of young and old Drosophila melanogaster.
MicroRNAs Circulate in the Hemolymph of Drosophila and Accumulate Relative to Tissue microRNAs in an Age-Dependent Manner.
Sex, Age, Specimen part, Subject
View SamplesPurpose: Aim of the study is to identify changes in hepatic gene expression induced by either a 40kcal% coconut oil rich high fat diet (HFD), a 40kcal% soybean oil plus coconut oil high fat diet (SO-HFD) or a low fat vivarium chow diet (Viv). Methods: Livers from mice that had been fed one of the above mentioned diets for 35 weeks, were used to make cDNA libraries that were then sent for deep sequencing, using the Illumina TruSeq RNA. Result: Many genes involved in metabolism, lipid binding, transport and storage and many Cyp genes are dysregulated in the two high fat diets as compared to Viv HFDs in SO-HFD mice. Comparing the two HFDs shows more metabolism and disease related genes dysregulated in SO-HFD vs HFD. Conclusion: A diet high in soybean oil may be more detrimental to metabolic health than a diet high in saturated fats. Overall design: cDNA isolated from livers from mice fed HFD, SO-HFD or Viv for 35 weeks, were 50bp pair-ended sequenced in triplicate using Illumina TruSeq RNA Sample Prep v2 Kit.
Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.
No sample metadata fields
View SamplesN6-methyladenosine RNA (m6A) is the most abundant internal mRNA modification in mammals. While its role in the regulation of posttranscriptional gene expression is beginning to be unveiled, its function during development of complex organisms is poorly understood. Here, we identify Spenito as a novel member of the methyltransferase complex and show that m6A in Drosophila is necessary for proper synaptic growth, and in regulation of early steps of pre-mRNA splicing. Splicing of Sex-lethal and of its downstream targets are defective in animals lacking m6A, revealing also important roles in sex determination and dosage compensation. Finally, we implicate the nuclear m6A reader protein, YT521-B, as a crucial effector of m6A modifications in vivo. Altogether, our work provides important novel insights into m6A biology through identification and characterization of both m6A-writing and -reading proteins in Drosophila and their effects on splicing, neurogenesis and sex-determination within the context of the whole animal. Overall design: RNA seq in Drosophila melanogaster (flies) (3 Conditions, triplicates)
m<sup>6</sup>A modulates neuronal functions and sex determination in Drosophila.
Sex, Specimen part, Subject
View SamplesPurpose: Aim of the study is to identify functional differences between the P1 and P2-HNF4a isoforms. To do this, we generated Tet-On inducible lines that express either the human (P1) HNF4a2 or (P2) HNF4a8 under control of DOX in the HCT116 human colon cancer cells. Methods: HNF4a2 and Parental lines were induced with 0.3 µg/mL DOX, while HNF4a8 line was induced with either 0.1 or 0.3 µg/mL DOX for 24 hours. Samples were generated by deep sequencing, using the Illumina TruSeq RNA. Result: There were common and unique dysregulated genes identified in the HNF4a2 and HNF4a8 lines (+DOX); more upregulated genes than downregulated genes in both the lines. Conclusion: The functional difference between HNF4a2 and HNF4a8 is that the latter tends to upregulate genes involved in proliferation and anti-apoptosis while HNF4a2 upregulates genes involved in growth suppression and cell death. Overall design: Tet-On inducible HCT116 cell (Parental, HNF4a2, and HNF4a8) lines, treated with (0.0, 0.1, or 0.3 µg/mL) DOX for 24 hours, were 50bp pair-ended sequenced in triplicate using Illumina TruSeq RNA Sample Prep v2 Kit.
Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells.
No sample metadata fields
View SamplesPurpose: The goal of this study is to identify host genes whose expression is perturbed in primary CD4+ T cells by histone deacetylase (HDAC) inhibitors (HDACi) SAHA and RMD, which have different potencies and specificities for various HDACs. The study aims to evaluate the effects of SAHA and RMD that may promote or inhibit reactivation of HIV provirus out of latency. Methods: Peripheral blood mononuclear cells were collected from 4 HIV-seronegative donors. CD4+ T cells were isolated and utilized to generate an in vitro model of latent HIV infection (model developed in the Spina laboratory and previously described in Spina et al., 2013). Mock-infected cells were cultured in parallel to evaluate effects of SAHA and RMD that may be dependent on the exposure of cells to virus. Following generation of the model, cells were treated with SAHA, RMD or their solvent dimethyl sulfoxide (DMSO) for 24 hours. Mock-infected cells were treated in parallel. The experiment had 4 biological replicates, 6 conditions for each, for a total of 24 samples. ERCC spikes (Thermo Fisher Scientific, Inc.) were added to cell lysates based on cell number in each sample (10 ul of 1:800 dilution per million cells). Mix 1 was used for DMSO- and mix 2 for SAHA- and RMD-treated cells. After all samples were collected, RNA was extracted and subjected to deep sequencing by Expression Analysis, Inc. Sequence reads that passed quality filters were mapped using Tophat (human genome) or Bowtie (ERCC spikes and HIV) and counted using HTSeq. ERCC spikes with the same concentration in mixes 1 and 2 were utilized to remove unwanted technical variation. Any human gene which did not achieve at least 1 count per million reads in at least 4 samples or any ERCC that did not achieve at least 5 reads in at least 4 samples was discarded. Differential gene expression analysis was performed using library EdgeR in Bioconductor R. National Center for Biotechnology Information (NCBI) HIV-1 Human Interaction Database was then searched for genes that have been implicated in controlling HIV latency. EdgeR output was used to extract expression information of the genes of interest from the NCBI database to identify genes implicated in HIV latency that were modulated by SAHA and RMD. The resulting lists were manually curated to verify relevance to HIV latency, using the Description column of the NCBI database, as well as available PubMed references. Results: Using a custom built data analysis pipeline, ~100 million reads per sample were mapped to the human genome (build hg38). After applying filtering criteria, 16058 human transcripts, 19 ERCC spikes transcripts, and HIV NL4-3 transcripts were identified with the Tophat/Bowtie and HTSeq workflow. Differential expression analysis was performed between SAHA or RMD-treated and DMSO-treated cells. In addition, differential modulation of gene expression by SAHA and RMD in the model of HIV latency and mock-infected cells was assessed using EdgeR. In mock-infected cells, SAHA upregulated 3,971 genes and downregulated 2,940 genes; RMD upregulated 5,068 genes and downregulated 4,050 genes. In the model of HIV latency, SAHA upregulated 3,498 genes and downregulated 2,904 genes; RMD upregulated 5,116 genes and downregulated 4,053 genes (FDR < 0.05). SAHA modulated 6, and RMD 11 genes differentially between mock-infected cells and the model of HIV latency. Following search of the NCBI HIV-1 Human Interaction Database, 27 genes upregulated and 29 downregulated in common between SAHA and RMD were found to be relevant to regulation of HIV latency; 31 were up- and 32 downregulated by RMD only; and 6 were up- and 2 were downregulated by SAHA only. Conclusions: This study demonstrates that SAHA and RMD, which have different potencies and specificities for HDACs, modulate a set of overlapping genes implicated in regulation of HIV latency. Some of these genes may be explored as additional host targets for improving the outcomes of “shock and kill” strategies. Overall design: Transcriptomic profiling of the in vitro model of HIV latency and mock-infected cells treated with SAHA, RMD or the solvent DMSO (N=4 donors) by deep sequencing at Expression Analysis, Inc.
Long non-coding RNAs and latent HIV - A search for novel targets for latency reversal.
Specimen part, Treatment, Subject
View SamplesMetformin, a commonly used drug prescribed to treat type-2 diabetes, has been found to extend health span and delay cancer incidence and progression. Here, we report that starting chronic treatment with low dose of metformin (0.1% w/w in diet) at one year of age extends health and lifespan in male mice, while a higher dose (1% w/w) was toxic. Treatment with low dose metformin mimicked some of the benefits of calorie restriction, such as improved physical performance, increased insulin sensitivity, and reduced LDL and cholesterol levels. At a molecular level, metformin increased AMP-activated protein kinase activity without attenuation of the mitochondrial electron transport chain activities. Metformin treatment resulted in lower chronic inflammation and increased antioxidant protection, suggesting that the ability of metformin to improve health of laboratory animals may stem from these factors. Our results support that metformin supplementation could be beneficial in extending health and lifespan in humans.
Metformin improves healthspan and lifespan in mice.
Sex, Specimen part
View SamplesWe obtained global measurements of decay and translation rates for mammalian mRNAs with alternative 3'' untranslated regions (3'' UTRs). Overall design: 1 3P-Seq sample from 3T3 cells and 1 3P-Seq sample from mouse ES cells; 2 2P-Seq steady state and 4 2P-Seq with actinomycin D; 6 polysome fraction 2P-Seq
3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts.
Specimen part, Treatment, Subject
View SamplesWe profiled genome-wide gene expression of 170 individual mid-gestation (embryonic day 11.5) whole mouse embryos derived from a 2-generation interspecies mouse cross and asked to what extent genetic variation drives four important parameters of regulatory architecture: allele-specific expression (ASE), imprinting, trans-regulatory effects, and maternal effect. The inbred strain C57BL/6J and wild-derived inbred strain CAST/EiJ were used in reciprocal crosses to generate F1 embryos. F1 progeny were backcrossed to C57BL/6J in reciprocal crosses to generate 154 N2 embryos. We employed a backcross design, in which N2 offspring have genotypically distinct parents, to enable comparison of gene expression for offspring from each side of the reciprocal cross. Our findings demonstrate that genetic variation contributes to widespread gene expression differences during mammalian embryogenesis. Overall design: Transcriptome analysis of E11.5 mouse embryos: 16 F1 embryos from reciprocally crossed C57BL/6J and CastEi/J parents; and 154 N2 embryos from reciprocal backcross of F1s to the C57BL/6J parent.
Constraint and divergence of global gene expression in the mammalian embryo.
No sample metadata fields
View Samples