We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Overall design: GMP and MEP were isolated from Runx1+/+-Tg(vav-Cre) and Runx1fl/fl-Tg(vav-Cre) mice as well as Runx1fl/fl-Tg(vav-Cre) XMP, total RNA extracted and sequenced
Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions.
Specimen part, Subject
View SamplesThe sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms by which downstream programs are activated are incompletely understood. The preB-cell receptor (preBCR) is an important checkpoint of B-cell development and essential for a preB-cell to traverse into an immature B-cell. Here, we show that activation of Mef2 transcription factors by preBCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the preB-cell stage in mice deficient for Mef2c and Mef2d transcription factors and that preBCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the ERK5 mitogen activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. Overall design: RNA-seq experiments were performed from Mef2c/d knockout proB-cells versus control cells to identify genes regulated by Klf2
Essential control of early B-cell development by Mef2 transcription factors.
Specimen part, Subject
View SamplesThe sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms by which downstream programs are activated are incompletely understood. The preB-cell receptor (preBCR) is an important checkpoint of B-cell development and essential for a preB-cell to traverse into an immature B-cell. Here, we show that activation of Mef2 transcription factors by preBCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the preB-cell stage in mice deficient for Mef2c and Mef2d transcription factors and that preBCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the ERK5 mitogen activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. Overall design: RNA-seq experiments were performed from Blnk-/- preB-cells with an integration of BLNK-ERt2 to identify genes regulated after preBCR signaling
Essential control of early B-cell development by Mef2 transcription factors.
Specimen part, Subject, Time
View SamplesThe sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms by which downstream programs are activated are incompletely understood. The preB-cell receptor (preBCR) is an important checkpoint of B-cell development and essential for a preB-cell to traverse into an immature B-cell. Here, we show that activation of Mef2 transcription factors by preBCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the preB-cell stage in mice deficient for Mef2c and Mef2d transcription factors and that preBCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the ERK5 mitogen activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. Overall design: RNA-seq experiments were performed from Klf2 overexpressing BMiFLT3 (15-3) cells to identify genes regulated by Klf2
Essential control of early B-cell development by Mef2 transcription factors.
Specimen part, Cell line, Subject
View SamplesThe sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms by which downstream programs are activated are incompletely understood. The preB-cell receptor (preBCR) is an important checkpoint of B-cell development and essential for a preB-cell to traverse into an immature B-cell. Here, we show that activation of Mef2 transcription factors by preBCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the preB-cell stage in mice deficient for Mef2c and Mef2d transcription factors and that preBCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the ERK5 mitogen activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. Overall design: RNA-seq experiments were performed from Klf2 knockout proB-cells versus control cells to identify genes regulated by Klf2
Essential control of early B-cell development by Mef2 transcription factors.
Specimen part, Subject
View SamplesStaphylococcus aureus can cause serious skin, respiratory, and other life-threatening invasive infections in humans, and methicillin-resistant S. aureus (MRSA) strains have been acquiring increasing antibiotic resistance. While MRSA was once mainly considered a hospital-acquired infection, the emergence of new strains, some of which are pandemic, has resulted in community-acquired MRSA infections that often present as serious skin infections in otherwise healthy individuals. Accordingly, defining the mechanisms that govern the activation and regulation of the immune response to MRSA is clinically important and could lead to the discovery of much needed rational targets for therapeutic intervention. Because the cytokine thymic stromal lymphopoetin (TSLP) is highly expressed by keratinocytes of the skin3, we investigated its role in host-defense against MRSA. Here we demonstrate that TSLP acts on neutrophils to increase their killing of MRSA. In particular, we show that both mouse and human neutrophils express functional TSLP receptors. Strikingly, TSLP enhances mouse neutrophil killing of MRSA in both an in vitro whole blood killing assay and an in vivo skin infection model. Similarly, TSLP acts directly on purified human blood neutrophils to reduce MRSA burden. Unexpectedly, we demonstrate that TSLP mediates these effects both in vivo and in vitro by engaging the complement C5 system. Thus, TSLP increases MRSA killing in a neutrophil- and complement-dependent manner, revealing a key connection between TSLP and the innate complement system, with potentially important therapeutic implications for control of MRSA infection. Overall design: mRNA expression analysis. 16 samples are from 2 donors, 8 samples per donor, 2 time points (4hr and 16 hr), and 4 conditions (control, TSLP treated, Heat Killed MRSA treated, and TSLP+HKM treated) .
A TSLP-complement axis mediates neutrophil killing of methicillin-resistant <i>Staphylococcus aureus</i>.
No sample metadata fields
View SamplesUsing a mimic miR-200c was restored to an aggressive, Type 2 endometrial cancer cell line, Hec50
MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.
Specimen part, Cell line
View SamplesNrf2 is an important therapeutic target as activation of this pathway detoxifies harmful insults and reduces oxidative stress. However, the role of Nrf2 in cancer biology is controversial. Protection against oxidative stress and inflammation can confer a survival advantage to tumor cells, leading to a poor prognosis, and constitutive activation of Nrf2 has been detected in numerous tumors. In our study, we examined the role of two clinically relevant classes of Nrf2 activators, the synthetic triterpenoids (CDDO-Im and CDDO-Me) and dimethyl fumarate (DMF) in lung cancer.
Dimethyl fumarate and the oleanane triterpenoids, CDDO-imidazolide and CDDO-methyl ester, both activate the Nrf2 pathway but have opposite effects in the A/J model of lung carcinogenesis.
Sex, Specimen part
View SamplesTo identify signature genes associated with increased osteoblastic phenotype in response to co-culture of mesenchymal and neuroblastoma cells
Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis.
No sample metadata fields
View SamplesTo compare hepatic gene expression in conditional Keap1 knockout (Alb-Cre:Keap1(flox/-)) and genetic control mice. Disruption of Keap1-mediated repression of Nrf2 signaling was expected to result in increased expression of Nrf2-regulated genes.
Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice.
No sample metadata fields
View Samples