This SuperSeries is composed of the SubSeries listed below.
Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers.
Cell line, Treatment, Time
View SamplesRosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical use. Rosi functions as a high-affinity ligand for PPARg, the adipocyte-predominant nuclear receptor (NR). The classic model, involving binding of ligand to the NR on DNA, explains positive regulation of gene expression, but ligand-dependent repression is not well understood. We have now addressed this issue by studying the direct effects of rosiglitazone on gene transcription, using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription were pronounced after 10 minutes and correlated with steady-state mRNA levels as well as with transcription at nearby enhancers (eRNAs). Upregulated eRNAs occurred almost exclusively at PPARg binding sites, to which rosi treatment recruited the coactivator MED1. By contrast, transcriptional repression by rosi involved a loss of MED1 from eRNA sites devoid of PPARg and enriched for other TFs including AP-1 factors and C/EBPs. Thus, rosi activates and represses transcription by fundamentally different mechanisms that could inform the future development of antidiabetic drugs.
Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers.
Cell line, Treatment, Time
View SamplesActivation of the hypoxia inducible transcription factor HIF-alpha and the NF-kappaB pathway promotes inflammation mediated tumor progression.
The hypoxia-inducible transcription factor ZNF395 is controlled by IĸB kinase-signaling and activates genes involved in the innate immune response and cancer.
Cell line, Treatment
View SamplesTo investigate the role of the transcriptional repressor Rev-erb alpha in epididymal white adipose tissue, we performed a microarray analysis of gene expression in the epididymal white adipose tissue of wildtype and Rev-erb alpha knock-out mice.
The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling.
Sex, Specimen part
View SamplesPurpose: The goal of this study was to identify differential splicing events in the Drosophila eye during aging. Overall design: Method: RNA extracted from dissected eye tissue of flies aged 10 and 40 days post-eclosion was used to generate cDNA libraries using NuGen Ovation Drosophila RNA seq system. Samples were sequenced using Illumina HiSeq2500 next generation sequencer (three biological replicates per time point).
Proper splicing contributes to visual function in the aging Drosophila eye.
Sex, Age, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.
Specimen part, Time
View SamplesThe nuclear receptor PPAR gamma is required for adipocyte differentiation, but its role in mature adipocytes is less clear. Here we report that knockdown of PPAR gamma expression in 3T3-L1 adipocytes returned the expression of most adipocyte genes towards preadipocyte levels. Consistently, down regulated but not up regulated genes showed strong enrichment of PPAR gamma binding. Surprisingly, not all adipocyte genes were reversed and the adipocyte morphology was maintained for an extended period after PPAR gamma depletion. To explain this, we focused on transcriptional regulators whose adipogenic regulation was not reversed upon PPAR gamma depletion. We identified GATA2, a transcription factor whose down-regulation early in adipogenesis is required for preadipocyte differentiation, remaining low after PPAR gamma knockdown. Forced expression of GATA2 in mature adipocytes complemented PPAR gamma depletion and impaired adipocyte functionality with a more preadipocyte- like gene expression profile. Ectopic expression of GATA2 in adipose tissue in vivo had similar effect on adipogenic gene expression. These results suggest that PPAR gamma-independent down regulation of GATA2 prevents reversion of mature adipocytes after PPAR gamma depletion.
Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-gamma depletion to revert the adipocyte phenotype.
No sample metadata fields
View SamplesCircadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erb , a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erb modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erb to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erb regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erb and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erb utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue.
GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.
Specimen part, Time
View SamplesPro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus (ARC) are oppositely regulated by caloric depletion and coordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) in the paraventricular nucleus of the hypothalamus (PVH). Although this population is critical to energy balance, the underlying neural circuitry remains unknown. Using mice expressing Cre recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVH(MC4R) neurons and further identify these cells as a functional exponent of ARC(AgRP) neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVH(MC4R)?lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVH(MC4R)?LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for antiobesity drug development. Overall design: Single-neuron mRNA-seq was performed on fluorescently-labeled or -unlabeled cells that were manually isolated from dissociated adult mouse paraventricular and arcuate hypothalamus: Mc4r-2a-Cre::L10-GFP+ or Mc4r-2a-Cre::AAV-XFP+ or Mc4r-2a-Cre::AAV-XFP-negative PVH neurons; Agrp-IRES-Cre::L10-GFP+ ARC neurons; Pomc-hrGFP+ ARC neurons; and vGLUT2-IRES-Cre::AAV-XFP+ ARC neurons Note: Raw files unavailable for samples GSM2413312 GSM2413313 GSM2413314 GSM2413346 GSM2413347
A neural basis for melanocortin-4 receptor-regulated appetite.
Sex, Specimen part, Cell line, Subject
View Samples