Investigating the effects of two different classes of KDM1A inhibitors on the transcriptome of AML cell lines Overall design: 16 different samples with biological replicates. Treatment for 24 and 72 hours with an irreversible KDM1A inhibitor (RN-1) or a reversible KDM1A inhibitor (GSK690) or an inactive isomer of the latter (GSK690*).
Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes.
No sample metadata fields
View SamplesThe role of paracrine/autocrine factors in inflammation, immune response and tumor development is well established. There is also an evidence that some of the cytokines there involved may participate in the regulation of the male gonads. However, their involvement in pathogenesis of male infertility has not been well defined yet. The aim of the present study was to examine the expression levels of IL-1 family members, IL-6, IL-10, TNF family, SCF and c-kit in infertile patients with idiopathic non-obstructive azoospermia (NOA) compared to men with normal spermatogenesis
The gene expression analysis of paracrine/autocrine factors in patients with spermatogenetic failure compared with normal spermatogenesis.
Sex, Specimen part
View SamplesWe analyzed gene expression profiles of human testicular biopsies in men with idiopathic nonobstructive azoospermia. Using new generation oligonucleotide microarray platform GeneChip Human Gene 1.0 ST, we identified genes which could be potential biomarkers of azoospermia and molecular indicators that could determine a particular stage of impaired spermatogenesis. Thus, we shed light on genes which were had so far been weakly characterized and which were had never related to infertility before. These studies also included the comparative analysis of the hierarchical clustering of gene expression profile with histopathological data provided for azoospermic patients.
Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis.
Sex, Specimen part
View SamplesWe report data obtaibed from high-throughput sequencing of small RNAs in 20 samples of follicular thyroid tumors. We analyzed a total of 4.7±1.5million reads per sample with 3 different pipelines. The main goal was to evaluate the usefulness of next generation sequencing in small RNA profiling and the concordance of its results with microarrays and qPCR. Additionally we verified published follicular thyroid tumor biomarkers in the set of our samples. Overall design: Small RNA expression profiling with High Throughput Sequencing of 20 thyroid tumor samples, performed on an Illumina HiScan-SQ.
Analysis options for high-throughput sequencing in miRNA expression profiling.
Subject
View SamplesThe systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. Additionally, 373 tumors were assayed for copy number alterations via Agilent 244A CGH arrays and 153 breast, lung, and colon samples were assayed for mRNA abundance with Affymetrix HuEx1 Exon Arrays.
Diverse somatic mutation patterns and pathway alterations in human cancers.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.
Sex, Specimen part, Treatment
View SamplesARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.
ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.
No sample metadata fields
View SamplesIncreasing evidence suggests that microRNAs may play important roles in regulating self-renewal and differentiation in mammalian stem cells (SCs). Here, we explore this issue in skin. We first characterize microRNA expression profiles of skin SCs versus their committed proliferative progenies and identify a microRNA subset associating with stemness. Of these, miR-125b is dramatically downregulated in early SC-progeny. We engineer an inducible mice system and show that when miR-125b is sustained in SC-progenies, tissue balance is reversibly skewed towards stemness at the expense of epidermal, oil-gland and HF differentiation. Using gain-and-loss of function in vitro, we further implicate miR-125b as a repressor of SC differentiation. In vivo, transcripts repressed upon miR-125b induction are enriched >700% for predicted miR-125b targets normally downregulated upon SC-lineage commitment. We verify some of these miR-125b targets, and show that Blimp1 and VDR in particular can account for many tissue imbalances we see when miR-125b is deregulated.
Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.
Sex, Specimen part, Treatment
View SamplesA chemical screen was performed in search of compounds that modify plant responses to sucrose. This screen uncovered that sulfamethoxazole (SMX), a folate biosynthesis inhibitor, acted synergistically with sucrose to inhibit hypocotyl elongation, suggesting interaction between these two pathways. Transcriptome analysis was performed to identify changes in transcript abundance that may underpin crosstalk between sucrose and SMX. Three-day-old dark-grown seedlings were treated to sucrose and SMX at concentrations that induced no change in hypocotyl elongation when administered independently, yet restricted elongation when both were present in the growth media (10mM and 0.2M, respectively). This analysis uncovered multiple core auxin signalling components that exhibit altered transcript abundance in response to co-treatment with sucrose and SMX, suggesting that auxin signalling mediates crosstalk between these two pathways. This study highlights an input through which metabolic status can shape plant growth and development through hormone signalling.
Interplay between sucrose and folate modulates auxin signaling in Arabidopsis.
Specimen part
View SamplesPolycomb protein group (PcG)-dependent trimethylation on H3-K27(H3K27me3) regulates identity of embryonic stem cells (SCs). How H3K27me3 governs adult SCs and tissue development is unclear. Here, we conditionally target H3-K27-methyltransferases Ezh2 and Ezh1 to address their roles in mouse skin homeostasis. Postnatal phenotypes appear only in doubly-targeted skin, where H3K27me3 is abolished, revealing functional redundancy in EZH1/2 proteins. Surprisingly, while Ezh1/2-null hair follicles (HFs) arrest morphogenesis and degenerate due to defective proliferation and increased apoptosis, epidermis hyperproliferates and survives engraftment. mRNA-microarray studies reveal that despite these striking phenotypic differences, similar genes are upregulated in HF and epidermal Ezh1/2-null progenitors. Featured prominently are a) PcG-controlled non-skin lineage genes, whose expression is still significantly lower than in native tissues, and b) the PcG-regulated Ink4a/Inkb/Arf locus. Interestingly, even though Ink4a/Arf/Ink4b genes are fully activated in HF cells, they only partially so in epidermal-progenitors. Importantly, transduction of Ink4b/Ink4a/Arf shRNAs restores proliferation/survival of Ezh1/2-null HF progenitors in vitro, pointing towards the relevance of this locus to the observed HF phenotypes. Our findings reveal new insights into Polycomb-dependent tissue control and provide a new twist to how different progenitors within one tissue respond to loss of H3K27me3.
EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair.
Sex, Age, Specimen part
View Samples