Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression events in specific cell types in a broad range of species. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping, quantitative PCR, and immunofluorescence localization. Studies of sixteen human postmortem brains revealed cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event experienced by three donors. Our data establish a comprehensive approach for analysis of unique molecular events associated with specific circuits and cell types in a wide variety of human conditions. Overall design: RNA purified from nuclei or cytoplasm from mouse, rat, or human cerebellum. ATAC-seq was also performed using cerebellar nuclei from the three species.
Species and cell-type properties of classically defined human and rodent neurons and glia.
Sex, Age, Specimen part, Subject
View SamplesDetermination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression events in specific cell types in a broad range of species. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping, quantitative PCR, and immunofluorescence localization. Studies of sixteen human postmortem brains revealed cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event experienced by three donors. Our data establish a comprehensive approach for analysis of unique molecular events associated with specific circuits and cell types in a wide variety of human conditions. Overall design: RNA purified from nuclei or cytoplasm from mouse, rat, or human cerebellum. ATAC-seq was also performed using cerebellar nuclei from the three species.
Species and cell-type properties of classically defined human and rodent neurons and glia.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Specific genomic and transcriptomic aberrations in tumors induced by partial hepatectomy of a chronically inflamed murine liver.
Sex, Specimen part, Treatment
View SamplesBackground & Aims. Resection of hepatocellular carcinoma (HCC) tumors by partial hepatectomy (PHx) is associated with promoting hepatocarcinogenesis. We have previously reported that PHx promotes hepatocarcinogenesis in the Mdr2-knockout (Mdr2-KO) mouse, a model for inflammation-mediated HCC. Now, we explored the molecular mechanisms underlying the tumor-promoting effect of PHx in these mice. Methods. Using microarrays-based techniques, we compared genomic and transcriptomic profiles of HCC tumors developing in the Mdr2-KO mice either spontaneously or following PHx. Results. PHx accelerated HCC development in these mice by four months. PHx-induced tumors had only amplifications affecting multiple chromosomes and locating mainly near the acrocentric centromeres of murine chromosomes. Four different chromosomal regions were amplified each in at least three tumors. All tumors of untreated mice had chromosomal aberrations, including both deletions and amplifications. Comparison of gene expression profiles revealed a significantly enriched expression of oncogenes, chromosomal instability markers and E2F1 targets in the post-PHx compared to spontaneous tumors. Both tumor groups shared the same frequent amplification at chromosome 18. Here, we demonstrated that one of the regulatory genes encoded by this amplified region, Crem, was over-expressed in the nuclei of murine and human HCC cells in vivo, and that it stimulated proliferation of human HCC cells in vitro. Conclusions: PHx of a chronically inflamed liver directed tumor development to a discrete pathway characterized by amplification of specific chromosomal regions and expression of specific tumor-promoting genes. Crem is a new candidate HCC oncogene frequently amplified in this model and frequently over-expressed in human HCC.
Specific genomic and transcriptomic aberrations in tumors induced by partial hepatectomy of a chronically inflamed murine liver.
Specimen part, Treatment
View SamplesStandard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective is to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues.
Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies.
Age, Specimen part
View SamplesThe human prostate epithelium is predominantly comprised of two cell-types: basal and luminal. While basal cells exhibit significant progenitor activity in a variety of functional assays, luminal cells are depleted of this activity. Recent studies indicate that approximately 1% of luminal cells exhibit progenitor activity. We have discovered that differential expression of the glycoprotein CD38 can fractionate the luminal population into two subsets: CD38+ and CD38-low. In functional assays, the CD38-low luminal cells exhibit roughly 5-fold increased progenitor activity compared to the remaining CD38+ population. Therefore, we propose that CD38-low luminal cells represent an enriched luminal progenitor population while the CD38+ subset is predominantly comprised of mature non-progenitor luminal cells.
Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome.
Specimen part, Subject
View SamplesWe characterize histone crotonylation in intestinal epithelium-derived cells through Mass spectrometry, ChIp-Seq and RNA-Seq approaches and show that this modification is removed by class I histone deacetylases, HDAC1, 2 and 3. Overall design: RNA-Seq profile from mouse colon epithelium. ChIP-Seq experiments for H3K18crotonylation and H3K4me3 on mouse colon epithelium. ChIP-Seq experiments for H3K18 crotonylation and H3K18 acetylation on HCT116 cell line treated or not with the HDAC inhibitor MS275 (5 µM) for 18h. All the experiments were performed in triplicate.
Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases.
No sample metadata fields
View SamplesARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.
ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.
No sample metadata fields
View SamplesBackground: In this study we reveal a previously undescribed role of the HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1) tumor suppressor protein in normal vertebrate heart development using the zebrafish (Danio rerio) model. We examined the link between the cardiac phenotypes associated with hace1 loss of function to the expression of the Rho small family GTPase, rac1, which is a known target of HACE1 and promotes ROS production via its interaction with NADPH oxidase holoenzymes. We examined expression changes induced by knock-down of hace1 in zebrafish at 48 hpf, the stage when heart abnormalities are observed. This was done by collecting duplicate samples of control and hace1 morphant embryos and performing RNA sequencing on them. Conclusions: Our study demonstrates that HACE1 is critical in the normal development and proper function of the heart via a ROS-dependent mechanism. Overall design: 2 samples of control and hace1 morphant zebrafish embryos at 48 hpf were analyzed
hace1 Influences zebrafish cardiac development via ROS-dependent mechanisms.
No sample metadata fields
View SamplesChronic non-healing venous leg ulcers (VLUs) are a widespread debilitating disease with high morbidity and associated costs, as approximately $15 billion annually are spent on the care of VLUs. Despite their socioeconomic burden, there is a paucity of novel treatments targeted towards healing VLUs, which can be attributed to both lack of pathophysiologic insight into VLU development as well as lack of knowledge regarding biologic actions of VLU-targeted therapies. Currently, the bioengineered bilayered living cellular construct (BLCC) skin substitute is the only FDA-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with non-healing VLUs were treated with either standard care (compression therapy) or with BLCC together with standard care. Tissue was collected from the VLU edge before and 1 week after treatment, and samples underwent comprehensive microarray, mRNA and protein analyses. Ulcers treated with BLCC skin substitute displayed three distinct patterns suggesting the mechanisms by which BLCC shifted a non-healing into a healing tissue response: it modulated inflammatory and growth factor signaling; it activated keratinocytes; and it attenuated Wnt/-catenin signaling. In these ways, BLCC application orchestrated a shift of the chronic non-healing ulcer microenvironment into a distinctive healing milieu resembling that of an acute, healing wound. Our findings also provide first patient-derived in vivo evidence of specific biologic processes that can be targeted in the design of therapies to promote healing of chronic VLUs.
A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers.
Specimen part, Disease stage, Time
View Samples