We studied differences in gene expression between Populus P35S::EBB1 lines and control, affecting plant growth and differentiation, and dormancy. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by overexpression of the EBB1 gene.
EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.
Specimen part
View SamplesWe study gene expression Populus amiEBB1 lines affecting dormancy. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes droved by expression of artifical micro RNA (ami) targeting EBB1 gene.
EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.
Specimen part
View SamplesRegeneration of transgenic cells remains a major obstacle to research and commercial deployment of transgenic plants for most species.
Genome scale transcriptome analysis of shoot organogenesis in Populus.
Sex
View SamplesPolycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production, arrested follicle development, and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss. To examine whether the perturbations in follicle growth and the intrafollicular environment affects development of the mature PCOS oocyte, genes that are differentially expressed in PCOS compared to normal oocytes were defined using microarray analysis. This analysis detected approximately 8000 transcripts. Hierarchical clustering and principal component analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. 374 genes had a statistically-significant increase or decrease in mRNA abundance in PCOS oocytes. A subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis, suggesting that increased mRNAs for these proteins may negatively affect oocyte maturation and/or early embryonic development. Of the 374 differentially expressed genes, 68 contained putative androgen receptor, retinoic acid receptor, and/or peroxisome proliferating receptor gamma binding sites, including 9 of the genes involved in chromosome alignment and segregation. These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Furthermore, altered mRNA levels in the PCOS oocyte may contribute to defects in meiosis and/or mitosis which might impair oocyte competence for early development and therefore contribute to poor pregnancy outcome in PCOS.
Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis.
No sample metadata fields
View SamplesWe study differences in gene expression between Populus P35S::BL (BL-oe) lines and control, affecting plant growth and differentiation, and dormancy. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes droved by overexpression of BL gene.
BIG LEAF is a regulator of organ size and adventitious root formation in poplar.
Specimen part
View SamplesPolycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder that affects 5-10% of reproductive aged women. The hallmark characteristic of PCOS is increased ovarian androgen synthesis. Previous studies by our laboratory demonstrated that increased androgen synthesis is a stable biochemical phenotype of PCOS theca cells which are the primary source of ovarian androgen production. The increase in theca cell steroidogenesis was due to an increase in expression of several steroidogenic enzymes including CYP17 and CYP11A but not StAR. Interestingly, the anti-epileptic drug valproic acid induces increased theca cell androgen synthesis and increased CYP17 and CYP11A mRNA levels. In this study we have characterized the gene expression profiles of theca cells obtained from normal or polycystic ovaries which were maintained in the absence (UNT) or presence (VPA) of valproic acid. The data identifed new candidate genes and novel signaling pathways which may contribute to the manifestation of PCOS phenotypes including increased androgen production. The experiments in this study were carried using the Affymetrix U133A and U133B oligonucleotide chips.
Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects.
No sample metadata fields
View SamplesPolycystic ovary Syndrome (PCOS) is a heterogeneous endocrine disorder that shows evidence of genetic predidposition among affected individuals. We have utilized the Microarray data from granulosa cells of normal and PCOS women for network construction.
Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis.
Specimen part, Disease
View SamplesThe macrolide rapamycin is known for its immunosuppressive properties since it inhibits mTOR (mammalian target of rapamycin), which activity affects differentiation and functions of various innate and adaptive immune cells involved in graft-versus-host disease development. Since rapamycin procures immunosuppressive effects on the immune response, rapamycin is an attractive candidate for graft-versus-host disease prevention after allogeneic bone marrow transplantation
Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity.
No sample metadata fields
View SamplesThe macrolide rapamycin is known for its immunosuppressive properties since it inhibits mTOR (mammalian target of rapamycin), which activity affects differentiation and functions of various innate and adaptive immune cells involved in graft-versus-host disease development. Since rapamycin procures immunosuppressive effects on the immune response, rapamycin is an attractive candidate for graft-versus-host disease prevention after allogeneic bone marrow transplantation. Recently, an activating effect of rapamycin on the function of myeloid-derived suppressor cells (MDSCs), a subset of immune suppressive cells of myeloid origin was reported. However, the effect of rapamycin treatment on MDSCs induction and function in the management of graft-versus-host disease is largely unknown.
Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity.
No sample metadata fields
View SamplesInduced pluripotent stem (iPS) cell reprogramming is a gradual epigenetic process that reactivates the pluripotent transcriptional network by erasing and establishing heterochromatin marks. Here, we characterize the physical structure of heterochromatin domains in full and partial mouse iPS cells by correlative Electron Spectroscopic Imaging (ESI). In somatic and partial iPS cells, constitutive heterochromatin marked by H3K9me3 is highly compartmentalized into chromocenter structures of densely packed 10 nm chromatin fibers. In contrast, chromocenter boundaries are poorly defined in pluripotent ES and full iPS cells, and are characterized by unusually dispersed 10 nm heterochromatin fibers in high Nanog-expressing cells, including pluripotent cells of the mouse blastocyst prior to differentiation. This heterochromatin reorganization accompanies retroviral silencing during conversion of partial iPS cells by Mek/Gsk3 2i inhibitor treatment. Thus, constitutive heterochromatin reorganization serves as a novel biomarker with retroviral silencing for identifying iPS cells in the very late stages of reprogramming.
Constitutive heterochromatin reorganization during somatic cell reprogramming.
Specimen part, Cell line
View Samples