Bevacizumab induces glioblastoma resistance in two in vivo xenograft models. Two cell lines were developed with acquired resistance to bevacizumab. Gene expression difference were analyzed between treated and untreated tumors.
Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition.
Specimen part, Treatment
View SamplesKnocking down ALKBH5 in Glioma Stem Cells resulted in an altered gene expression profile
m<sup>6</sup>A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.
Specimen part
View SamplesWe demonstrate that the catalytic subunit of Polycomb Repressive Complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are co-expressed in GBM and significantly induced in post-irradiation recurrent tumors whose expression inversely correlated with patient prognosis. Through gain-and loss-of-function study, our data show that MELK or FOXM1 contributes on GSC radioresistance by regulation of EZH2.
EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional network for mesenchymal transformation of brain tumours.
Time
View SamplesUsing a novel combination of cellular-network reverse-engineering algorithms and experimental validation assays, we identified a transcriptional module, including six transcription factors that synergistically regulates the mesenchymal signature of malignant glioma. This is a poorly understood molecular phenotype, never observed in normal neural tissue. It represents the hallmark of tumor aggressiveness in high-grade glioma, and its upstream regulation is so far unknown. Overall, the newly discovered transcriptional module regulates >74% of the signature genes, while two of its transcription factors (C/EBP and Stat3) display features of initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBP and Stat3 is sufficient to reprogram neural stem cells along the aberrant mesenchymal lineage, while simultaneously suppressing differentiation along the default neural lineages (neuronal and glial). Conversely, silencing the two transcription factors in human glioma cell lines and glioblastoma-derived tumor initiating cells leads to collapse of the mesenchymal signature with corresponding loss of tumor aggressiveness in vitro and in immunodeficient mice after intracranial injection. In human tumor samples, combined expression of C/EBP and Stat3 correlates with mesenchymal differentiation of primary glioma and is a predictor of poor clinical outcome. Taken together, these results reveal that activation of a small regulatory module inferred from the accurate reconstruction of transcriptional networks is necessary and sufficient to initiate and maintain an aberrant phenotypic state in eukaryotic cells.
The transcriptional network for mesenchymal transformation of brain tumours.
Time
View SamplesUsing a novel combination of cellular-network reverse-engineering algorithms and experimental validation assays, we identified a transcriptional module, including six transcription factors that synergistically regulates the mesenchymal signature of malignant glioma. This is a poorly understood molecular phenotype, never observed in normal neural tissue. It represents the hallmark of tumor aggressiveness in high-grade glioma, and its upstream regulation is so far unknown. Overall, the newly discovered transcriptional module regulates >74% of the signature genes, while two of its transcription factors (C/EBP and Stat3) display features of initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBP and Stat3 is sufficient to reprogram neural stem cells along the aberrant mesenchymal lineage, while simultaneously suppressing differentiation along the default neural lineages (neuronal and glial). Conversely, silencing the two transcription factors in human glioma cell lines and glioblastoma-derived tumor initiating cells leads to collapse of the mesenchymal signature with corresponding loss of tumor aggressiveness in vitro and in immunodeficient mice after intracranial injection. In human tumor samples, combined expression of C/EBP and Stat3 correlates with mesenchymal differentiation of primary glioma and is a predictor of poor clinical outcome. Taken together, these results reveal that activation of a small regulatory module, inferred from the accurate reconstruction of transcriptional networks, is necessary and sufficient to initiate and maintain an aberrant phenotypic state in eukaryotic cells.
The transcriptional network for mesenchymal transformation of brain tumours.
No sample metadata fields
View SamplesWe assessed global gene expression changes in 32 human glioblastoma specimens Overall design: Human mRNA profiles of 32 glioblastoma specimens, were obtained by sequencing on Illumina HiSeq 3000
Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype.
No sample metadata fields
View SamplesChromatin and transcriptome comparisons of matched NSCs and derivative GSCs reveal activation of WNT5A and an EC signature
Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.
Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part
View Samples