Background and Aims: Gene expression analysis of colon biopsies using high-density oligonucleotide microarray can contribute to the understanding of local pathophysiological alterations and to functional classification of precancerous adenoma, different stage colorectal carcinomas (CRC) and inflammatory bowel diseases (IBD).
Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples.
No sample metadata fields
View SamplesMost of the breast cancer samples used in clinical research contain multiple cell types other than epithelial cells alone. The non-epithelial cell types have have a substantial effect on the gene expression-profile, which is used to define molecular subtypes of the tumours. The purpose of this data set is to retrieve gene-expression profile within tumour epithelial cells. We collected 9 breast cancer epithelial cell lines and 5 tumour sampes from which epithelial cells were sorted and enriched using BerEp4 antibody coated beads. We profiled the mRNA expression level of these samples and classified probe sets into epithelial genes which were those genes with present calls in at least 50% of the samples. Then we derived an 23-gene signature based on only the epithelial genes to stratify breast cancer.
Minimising immunohistochemical false negative ER classification using a complementary 23 gene expression signature of ER status.
Specimen part
View SamplesIntegrated DNA and expression array analysis in primary human breast tumors identified chromosome 8q22 copy number gain and a suite of over-expressed genes in this region highly relevant to subsequent recurrence.
Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer.
Age, Specimen part, Subject
View SamplesBasal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin) profiling. We found that the basal-like trait is generally dominant and it is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells is sufficient to induce luminal-to-basal phenotypic switch implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells. Overall design: RNA-Seq in breast cancer cell-lines
Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer.
No sample metadata fields
View SamplesGene expression data from 21 triple negative breast cancer samples treated with cisplatin & bevacizumab in the neoadjuvant setting as part of a clinical trial.
Overexpression of BLM promotes DNA damage and increased sensitivity to platinum salts in triple-negative breast and serous ovarian cancers.
Specimen part
View SamplesEvidence suggests that BRCA1 mutation associated tumors have increased sensitivity to DNA damaging agents like cisplatin. Sporadic triple negative breast cancers (TNBC) have many phenotypic similarities to BRCA1 tumors and may have a similar sensitivity to cisplatin. We tested the efficacy of cisplatin monotherapy in 28 TNBC patients in a single arm neoadjuvant trial with outcome measured by pathologic treatment response quantified using the Miller-Payne scale.
Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer.
Age, Disease stage
View SamplesThe transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr deficiency could aggravate toxicity of CsA in PCLS and pinpoint to novel genes/processes regulated by FXR.
Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions.
No sample metadata fields
View SamplesAnalysis of gene expression profile of B16-F10 murine melanoma cells exposed to hypoxic conditions (1% oxygen) or hypoxia mimicry (cobalt chloride) for 24 hours. Gene expression profiles were analyzed using MG-U74Av2 oligonucleotide microarrays. Data analysis revealed 2541 probesets (FDR<5%) for 1% oxygen experiment and 364 probesets (FDR<5%) for cobalt chloride, that showed differences in expression levels. Analysis of hypoxia-regulated genes (1% O2) by stringent Family-Wise Error Rate estimation indicated 454 significantly changed transcripts (p<0.05). The most upregulated genes were Lgals3, Selenbp1, Nppb (more than ten-fold increase). Both hypoxia and hypoxia-mimicry induced HIF-1 regulated genes. However, unsupervised analysis (Singular Value Decomposition) revealed distinct differences between gene expression induced by these two experimental conditions.
Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro.
Cell line
View SamplesThe life cycle of human papillomaviruses (HPV) is strictly linked to the differentiation of their natural host cells. The HPV E6 and E7 oncoproteins can delay the normal differentiation program of keratinocytes, however, the exact mechanisms responsible for this have not yet been identified. The goal of this study was to investigate the effects of HPV16 oncoproteins on the expression of genes involved in keratinocyte differentiation. Primary human keratinocytes transduced by LXSN (control) retroviruses or virus vectors expressing HPV16 E6, E7 or E6/E7 genes were subjected to gene expression profiling. The results of microarray analysis showed that HPV 16 E6 and E7 have the capacity to down-regulate the expression of several genes involved in keratinocyte differentiation. Quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to confirm microarray data. To investigate the effects of the HPV oncoproteins on the promoters of selected keratinocyte differentiation genes, luciferase reporter assays were performed. Our results suggest that the HPV 16 E6 and/or E7 oncogenes are able to down-regulate the expression of several genes involved in keratinocyte differentiation, at least partially by down-regulating their promoter activity. This activity of the HPV oncoproteins may have a role in the productive virus life cycle, and also in virus induced carcinogenesis.
Transcriptional regulation of genes involved in keratinocyte differentiation by human papillomavirus 16 oncoproteins.
Specimen part
View SamplesRNA sequencing on LNCaP cells was carried out to study how tunicamycin-induced gene expression is affected by knockdown of EIF2AK3 and ATF4. Overall design: Samples from the below setup (treatments protocol) were harvested from four independent experiments. RNA integrity of total RNA samples was assessed by Bioanalyzer. All samples had RIN = 9.7.
The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress.
Specimen part, Cell line, Treatment, Subject
View Samples