To understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.
The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.
Specimen part
View SamplesEstrogen clearly prevents osteoporotic bone loss by attenuating bone resorption. The molecular basis of how this is accomplished, however, remains elusive. Here we report a critical role of osteoclastic ERa in mediating estrogen action on bone in females. We selectively ablated ERa in differentiated osteoclasts (ERa dOc/dOc). ERa dOc/dOc females, but not males, exhibited clear trabecular bone loss, similar to the osteoporotic bone phenotype in post-menopausal women. Recovery of bone loss by estrogen treatment of the ovariectomized ERa dOc/dOc females was ineffective in the trabecular areas of the long bones and lumbar vertebral bodies. Osteoclastic apoptosis, induced by estrogen, occurred simultaneously with up-regulation of Fas ligand (FasL) expression in intact trabecular bones of ERa +/+mice, but not in ERa dOc/dOc mice. ERa was also required for similar effects of estrogen and tamoxifen in cultured osteoclasts. These findings suggest that the osteoprotective actions of estrogen and SERMS are mediated at least in part through osteoclastic ERa in trabecular bone; and the life span of mature osteoclasts is regulated through activation of the Fas/FasL system.
Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts.
Sex, Specimen part
View SamplesThe early blood vessels of the embryo and yolk sac in mammals develop by aggregation of de novo forming angioblasts into a primitive vascular plexus, which then undergoes a complex remodeling process. Angiogenesis is also important for disease progression in the adult. However, the precise molecular mechanism of vascular development remains unclear.
Genome-wide identification of endothelial cell-enriched genes in the mouse embryo.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression.
Specimen part, Cell line, Treatment
View SamplesProstate cancer is the most common cancer in men. We identified that miR-29 family is the most androgen-responsive miRNA in hormone-refractory prostate cancer cells. For the screening of miR-29b target, we performed microarray analysis in two prostate cancer cells. Because TET2 is the primary target of miR-29 family by our analysis, we also performed TET2 signaling by microarray.
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression.
Specimen part, Cell line
View SamplesWe performed global scale microarray analysis to identify detailed mechanisms by which nonpermissive temperature induces cell growth arrest and differentiation in astrocyte RCG-12 cells harboring temperature-sensitive simian virus 40 large T-antigen by using an Affymetrix GeneChip system. Astrocyte RCG-12 cells used in this study were derived from primary cultured rat cortical glia cells infecting with a temperature-sensitive simian virus 40 large T-antigen. Although the cells grew continuously at the permissive temperature, the nonpermissive temperature led to cell growth arrest and differentiation. Of the 15,923 probe sets analyzed, nonpermissive temperature differentially expressed 556 probe sets by >2.0-fold.
Identification of genetic networks involved in the cell growth arrest and differentiation of a rat astrocyte cell line RCG-12.
No sample metadata fields
View SamplesWe performed global scale microarray analysis to identify detailed mechanisms by which nonpermissive temperature induces cell growth arrest and differentiation in tracheal epithelial RTEC11 cells harboring temperature-sensitive simian virus 40 large T-antigen by using an Affymetrix GeneChip system. Tracheal epithelial RTEC11 cells used in this study were derived from transgenic rats harboring a temperature-sensitive simian virus 40 large T-antigen. Although the cells grew continuously at the permissive temperature, the nonpermissive temperature led to cell growth arrest and differentiation.
Establishment and functional characterization of a tracheal epithelial cell line RTEC11 from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen.
No sample metadata fields
View SamplesThe liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secreted proteins, termed hepatokines.
A liver-derived secretory protein, selenoprotein P, causes insulin resistance.
Sex, Specimen part, Disease
View SamplesSaccharomyces cerevisiae is exposed to freeze-thaw stress in commercial processes including frozen dough baking. The cell viability and fermentation activity after freeze-thaw were dramatically decreased due to freeze-thaw injury. Because freeze-thaw injury involves complex phenomena, the mechanisms of it are not fully understood. We attempted to analyze the mechanisms of freeze-thaw injury by indirect gene expression analysis during post-thaw incubation after freeze-thaw treatment using DNA microarray profiling. The results showed that a high frequency of the genes involved in the homeostasis of metal ions were up-regulated depending on the freezing period. The phenotype of the deletion mutants of the up-regulated genes extracted by indirect gene expression analysis was assessed. The deletion strains of the MAC1 and CTR1 genes involved in copper ion homeostasis exhibited freeze-thaw sensitivity, suggesting that copper ion homeostasis is required for freeze-thaw tolerance. Supplementation with copper ions during post-thaw incubation increased intracellular superoxide dismutase activity. Inverse correlated with intracellular superoxide dismutase activity, intracellular levels of reactive oxygen species were decreased. Moreover, cell viability increased by supplementation with copper ions under specific assessment conditions. This study suggested that insufficiency of copper ion homeostasis may be one of the causes of freeze-thaw injury.
Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.
No sample metadata fields
View SamplesEmbryo from 6xbcd mother shows expansion of prospective head region. In this embryo, excessive cell death can be observed. This array expreriment is for identifying differentially expressed genes in the 2xbcd and 6xbcd conditions at stage 12-13
A novel cell death gene acts to repair patterning defects in Drosophila melanogaster.
Specimen part
View Samples