Fezf2 is highly and specifically expressed in mTECs in mouse thymus and Fezf2 deficiency (Fezf2 KO) in the thymus leads to autoimmunity. However, it is unclear how Fezf2 contributes to thymic gene expression.
Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance.
Age, Specimen part
View SamplesThe goal of this study was to elucidate the effects of inflammation on bone metabolism. As we found IL-17A is induced immediately after bone injury and Il17a-/- mice showed delayed healing, we analyzed the effects of IL-17A on mesenchymal cells in the repair tissue. Most of the IL-17RA+ cells were PaS cells. We collected these cells and analyzed their response to IL-17A by RNA sequencing. This analysis will provide a mechanistic insight into the mechanism of how IL-17A promote bone formation in the context of bone fracture healing. Overall design: PaS cells were harvested from the injury tissue of wild-type mice and cultured with or without IL-17A or BMP-2. RNAs were harvested at day 7.
IL-17-producing γδ T cells enhance bone regeneration.
Specimen part, Cell line, Subject
View SamplesEstrogen clearly prevents osteoporotic bone loss by attenuating bone resorption. The molecular basis of how this is accomplished, however, remains elusive. Here we report a critical role of osteoclastic ERa in mediating estrogen action on bone in females. We selectively ablated ERa in differentiated osteoclasts (ERa dOc/dOc). ERa dOc/dOc females, but not males, exhibited clear trabecular bone loss, similar to the osteoporotic bone phenotype in post-menopausal women. Recovery of bone loss by estrogen treatment of the ovariectomized ERa dOc/dOc females was ineffective in the trabecular areas of the long bones and lumbar vertebral bodies. Osteoclastic apoptosis, induced by estrogen, occurred simultaneously with up-regulation of Fas ligand (FasL) expression in intact trabecular bones of ERa +/+mice, but not in ERa dOc/dOc mice. ERa was also required for similar effects of estrogen and tamoxifen in cultured osteoclasts. These findings suggest that the osteoprotective actions of estrogen and SERMS are mediated at least in part through osteoclastic ERa in trabecular bone; and the life span of mature osteoclasts is regulated through activation of the Fas/FasL system.
Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts.
Sex, Specimen part
View SamplesFoxp3 is indispensable for Treg suppressive function, but the stability of Foxp3 has been controversial. In autoimmune arthritis, Th17 cells play a critically important pathological role, but the origin of Th17 cells remains unknown
Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis.
Specimen part
View SamplesProtein arginine methylation is a post-translational modification catalyzed by protein arginine methyltransferase (PRMT). To elucidate the role of PRMT5 in T cells, we generated T-cell specific PRMT5-deficient mice (Prmt5 flox/d Cd4-Cre mice) and found a severe loss of thymic iNKT cells as well as a reduced number in peripheral CD4+ and CD8+ T cells. As iNKT cells were significantly decreased in the stage 1, 2 and 3 of developmental stages, RNA-seq was performed using stage 1 iNKT cells of control and PRMT5-deficient mice. This transcriptome analysis will provide mechanistic insight into how PRMT5 contributes to thymic iNKT cell development. Overall design: Stage 1 iNKT cells were sorted from thymus of control and Prmt5 flox/D Cd4-Cre mice. Total RNA was extracted and RNA-seq was performed by Ion Proton.
Arginine methylation controls the strength of γc-family cytokine signaling in T cell maintenance.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression.
Specimen part, Cell line, Treatment
View SamplesProstate cancer is the most common cancer in men. We identified that miR-29 family is the most androgen-responsive miRNA in hormone-refractory prostate cancer cells. For the screening of miR-29b target, we performed microarray analysis in two prostate cancer cells. Because TET2 is the primary target of miR-29 family by our analysis, we also performed TET2 signaling by microarray.
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression.
Specimen part, Cell line
View SamplesCognitive deficit is a key feature of schizophrenia (SZ) and determines functional outcome. Nonetheless, molecular signatures underlying the deficit in neuronal tissues are not well understood.
Molecular signatures associated with cognitive deficits in schizophrenia: a study of biopsied olfactory neural epithelium.
Sex, Age, Specimen part, Race
View SamplesProstate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified androgen-regulated genes, CTBP2, FOXP1 and RUNX1. These factors interact with AR ligand dependently.
CtBP2 modulates the androgen receptor to promote prostate cancer progression.
Cell line, Treatment
View SamplesTo understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.
The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.
Specimen part
View Samples