This SuperSeries is composed of the SubSeries listed below.
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression.
Specimen part, Cell line, Treatment
View SamplesThe development of T cells has been characterized as taking place over three stages: nave (Tn), central memory (Tcm), and effector memory (Tem) cells.
Polarization diversity of human CD4+ stem cell memory T cells.
Sex, Age
View SamplesProstate cancer is the most common cancer in men. We identified that miR-29 family is the most androgen-responsive miRNA in hormone-refractory prostate cancer cells. For the screening of miR-29b target, we performed microarray analysis in two prostate cancer cells. Because TET2 is the primary target of miR-29 family by our analysis, we also performed TET2 signaling by microarray.
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression.
Specimen part, Cell line
View SamplesThe liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secreted proteins, termed hepatokines.
A liver-derived secretory protein, selenoprotein P, causes insulin resistance.
Sex, Specimen part, Disease
View SamplesStandard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective is to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues.
Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies.
Age, Specimen part
View SamplesEstrogen clearly prevents osteoporotic bone loss by attenuating bone resorption. The molecular basis of how this is accomplished, however, remains elusive. Here we report a critical role of osteoclastic ERa in mediating estrogen action on bone in females. We selectively ablated ERa in differentiated osteoclasts (ERa dOc/dOc). ERa dOc/dOc females, but not males, exhibited clear trabecular bone loss, similar to the osteoporotic bone phenotype in post-menopausal women. Recovery of bone loss by estrogen treatment of the ovariectomized ERa dOc/dOc females was ineffective in the trabecular areas of the long bones and lumbar vertebral bodies. Osteoclastic apoptosis, induced by estrogen, occurred simultaneously with up-regulation of Fas ligand (FasL) expression in intact trabecular bones of ERa +/+mice, but not in ERa dOc/dOc mice. ERa was also required for similar effects of estrogen and tamoxifen in cultured osteoclasts. These findings suggest that the osteoprotective actions of estrogen and SERMS are mediated at least in part through osteoclastic ERa in trabecular bone; and the life span of mature osteoclasts is regulated through activation of the Fas/FasL system.
Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts.
Sex, Specimen part
View SamplesTrib1 is critical for some myeloid cell differentiation.
Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages.
Specimen part
View SamplesTo understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.
The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.
Specimen part
View SamplesProstate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p=0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential. Overall design: Two biological replicates for prostate cancer cell line (LNCaP) and cell line representing normal prostate epithelium (RWPE-1), transfected with scrambled siRNA or two different siRNAs targeting ECI2. RNA was extracted and used for RNA-sequencing. The processed files provided are compressed folders containing multiple output files from CuffDiff runs estimating differentially expressed transcripts between the indicated ECI2 siRNA treated cells versus cells treated with Scrambled siRNAs.
Lipid degradation promotes prostate cancer cell survival.
No sample metadata fields
View SamplesTo elucidate the bioactive property of the dietary antioxidant curcumin, we examined tissue distribution and the gene expression- and lipidomic-profiles in epididymal white adipose tissue (eWAT) of the diet-induced obese mice. Dietary intake of curcumin (0.1% W/W) didnt affect the eWAT weight and the plasma lipid levels but reduced the levels of lipid peroxidation marker in eWAT. Curcumin was a slightly accumulated in eWAT and altered the gene expression associated with eukaryotic translation initiation factor 2 (EIF2) signaling. Curcumin suppressed the endoplasmic reticulum (ER) stress-related eIF2 phospholyration, the accumulation of macrophages and the expression of oxidative stress-sensitive transcription factor NF-B p65 and leptin, whereas anti-inflammatory effect wasnt enough to reduce the TNF- and IFN- levels. Lipidomic- and gene expression analysis suggests that curcumin reduced the contents of some diacylglyverols (DAGs) and DAG derived glycerophospholipids by suppressing the expressions of lipogenesis-related glycerol-3-phosphate acyltransferase 1 and lipolysis-related adipose triglyceride lipase.
Dietary Intake of Curcumin Improves eIF2 Signaling and Reduces Lipid Levels in the White Adipose Tissue of Obese Mice.
Sex, Specimen part
View Samples