Math2 (NEX-1/NeuroD6) is a member of the bHLH transcription factor family and is involved in neuronal differentiation and maturation. In the present study, we identified the genes targeted by Math2 using DNA microarrays and cultured rat cortical cells transfected with Math2. Of the genes regulated by Math2, we focused on plasticity-related gene 1 (Prg1). Prg1 expression induced by Math2 was confirmed in cultured rat cortical cells and PC12 cells analyzed by real-time quantitative PCR. Examining the promoter region of rat Prg1, we found four E-boxes designated -E1 to -E4 (CANNTG) which were recognized by the bHLH transcription factor. Using chromatin immunoprecipitation (ChIP) assays, we found that Math2 directly bound to the E-box(es) in the Prg1 promoter. The reporter assay of Prg1 showed that -E1 was critical for the regulation of the Prg1 expression by Math2. Then, the functional role of Math2 and Prg1 was investigated in PC12 cells. Seventy-two hours after transfection of Math2 or Prg1, neurite length and number was significantly induced in PC12 cells. Co-transfection with Prg1-siRNA completely inhibited Math2-mediated morphological changes. Our results suggest that Math2 directly regulates Prg1 expression and Math2-Prg1 cascade plays an important role in neurite outgrowth in PC12 cells.
Prg1 is regulated by the basic helix-loop-helix transcription factor Math2.
No sample metadata fields
View SamplesFibroadenomas are the most common benign breast tumors in women under 30. Unlike their malignant counterparts, relatively molecular profiling has been done on fibroadenomas. Here we performed gene expression profiling on ten fibroadenomas in order to better characterize these tumors. Through targeted amplicon sequencing, we have found that six of these tumors have MED12 mutations. We show that the MED12 mutations, among others, are associated with activated estrogen signaling, as well as increased invasiveness through upregulation of ECM remodelling genes.
Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.
Age
View SamplesWild-type cells were cultured at 30 deg and cells were harvested. Total RNAs were purified from 3 populations.
Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation.
No sample metadata fields
View SamplesBiopsies (lymph nodes, ascites or hydrothorax) from 60 patients with cancer of unknown primary origin were analyzed.
A microarray-based gene expression analysis to identify diagnostic biomarkers for unknown primary cancer.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.
Sex, Age
View SamplesThis study was conducted in order to identify biomarkers for a prognostic gene expression signature for metastases in early stage CRC.
A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.
Sex, Age
View SamplesTo explore functionally crucial tumor-suppressive (TS)-miRNAs in hepatocellular carcinoma (HCC), we performed integrative function- and expression-based screenings of TS-miRNAs in six HCC cell lines. The screenings identified seven miRNAs, which showed growth-suppressive activities through the overexpression of each miRNA and were endogenously downregulated in HCC cell lines. Further expression analyses using a large panel of HCC cell lines and primary tumors demonstrated four miRNAs, miR-101, -195, -378 and -497, as candidate TS-miRNAs frequently silenced in HCCs. Among them, two clustered miRNAs miR-195 and miR-497 showed significant growth-suppressive activity with induction of G1 arrest. Comprehensive exploration of their targets using Argonute2-immunoprecipitation-deep-sequencing (Ago2-IP-seq) and genome-wide expression profiling after their overexpression, successfully identified a set of cell-cycle regulators, including CCNE1, CDC25A, CCND3, CDK4, and BTRC. Our results suggest the molecular pathway regulating cell cycle progression to be integrally altered by downregulation of miR-195 and miR-497 expression, leading to aberrant cell proliferation in hepatocarcinogenesis. Identification of miR-195 and miR-497 target genes by sequencing Ago2-binding mRNAs and total mRNAs of miR-195 or miR-497 overexpressed, or non-treated Hep G2 cell. Overall design: Deep sequencing of RNAs in Ago2-IP fraction and mRNAs extracted from miR-195 or miR-497 overexpressed, or non-treated Hep G2 cell.
The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma.
Cell line, Treatment, Subject, Time
View SamplesBMP treatment induces expression of late differenitation genes in primary human keratinocytes. Overall design: RNA-seq analysis after treatment with EGFR inhibitor AG1478 with or without BMP27 or BMP inhibitor DMH1. each treatment and control was performed in triplicate
Single-Cell ID-seq Reveals Dynamic BMP Pathway Activation Upstream of the MAF/MAFB-Program in Epidermal Differentiation.
Specimen part, Subject
View SamplesWe report the effects of silencing SRSF1 or ZMAT2 in human epidermal stem cells on the transcriptome of epidermal stem cells. We found that silencing ZMAT2 or SRSF1 affects global splicing, however, ZMAT2 seems to regulate splicing of a smaller more specific subset of genes. Overall design: RNA-sequencing data following silencing SRSF1 or ZMAT2
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.
Specimen part, Subject, Time
View SamplesWe report the effects of induction of differentiation in human epidermal stem cells on the splicing of the transcriptome. Overall design: RNA-sequencing data following induction of differentiation in human epidermal stem cells
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.
Specimen part, Treatment, Subject
View Samples