We recently mapped 605 chromosomal breakpoints in 61 ATL cases by spectral karyotyping and identified chromosome 14q11 as one of the most common chromosomal breakpoint regions. To map the precise location of chromosomal breakpoints at 14q11, we performed single-nucleotide polymorphism (SNP)-based comparative genomic hybridization on leukemia cells from acute-type ATL patients. The breakpoints accumulated frequently adjacent to the T cell receptor alpha/delta chain locus (TCR/) with chromosomal deletions at 14q11 and a recurrent 0.9 Mb interstitial deletion was identified at a region including part of the TCR/ locus. Because leukemia-associated genes are frequently located near the breakpoint cluster regions, we then analyzed the gene expression profiles of ATL cells and identified N-myc downstream regulated gene 2 (NDRG2) as one of the genes that are down-regulated in ATLL cells among the 25 genes mapped to the region adjacent to the recurrently deleted regions at 14q11.
Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers.
Specimen part
View SamplesFibroadenomas are the most common benign breast tumors in women under 30. Unlike their malignant counterparts, relatively molecular profiling has been done on fibroadenomas. Here we performed gene expression profiling on ten fibroadenomas in order to better characterize these tumors. Through targeted amplicon sequencing, we have found that six of these tumors have MED12 mutations. We show that the MED12 mutations, among others, are associated with activated estrogen signaling, as well as increased invasiveness through upregulation of ECM remodelling genes.
Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.
Age
View SamplesWild-type cells were cultured at 30 deg and cells were harvested. Total RNAs were purified from 3 populations.
Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.
Sex, Age
View SamplesThis study was conducted in order to identify biomarkers for a prognostic gene expression signature for metastases in early stage CRC.
A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.
Sex, Age
View SamplesTo explore functionally crucial tumor-suppressive (TS)-miRNAs in hepatocellular carcinoma (HCC), we performed integrative function- and expression-based screenings of TS-miRNAs in six HCC cell lines. The screenings identified seven miRNAs, which showed growth-suppressive activities through the overexpression of each miRNA and were endogenously downregulated in HCC cell lines. Further expression analyses using a large panel of HCC cell lines and primary tumors demonstrated four miRNAs, miR-101, -195, -378 and -497, as candidate TS-miRNAs frequently silenced in HCCs. Among them, two clustered miRNAs miR-195 and miR-497 showed significant growth-suppressive activity with induction of G1 arrest. Comprehensive exploration of their targets using Argonute2-immunoprecipitation-deep-sequencing (Ago2-IP-seq) and genome-wide expression profiling after their overexpression, successfully identified a set of cell-cycle regulators, including CCNE1, CDC25A, CCND3, CDK4, and BTRC. Our results suggest the molecular pathway regulating cell cycle progression to be integrally altered by downregulation of miR-195 and miR-497 expression, leading to aberrant cell proliferation in hepatocarcinogenesis. Identification of miR-195 and miR-497 target genes by sequencing Ago2-binding mRNAs and total mRNAs of miR-195 or miR-497 overexpressed, or non-treated Hep G2 cell. Overall design: Deep sequencing of RNAs in Ago2-IP fraction and mRNAs extracted from miR-195 or miR-497 overexpressed, or non-treated Hep G2 cell.
The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma.
Cell line, Treatment, Subject, Time
View SamplesBMP treatment induces expression of late differenitation genes in primary human keratinocytes. Overall design: RNA-seq analysis after treatment with EGFR inhibitor AG1478 with or without BMP27 or BMP inhibitor DMH1. each treatment and control was performed in triplicate
Single-Cell ID-seq Reveals Dynamic BMP Pathway Activation Upstream of the MAF/MAFB-Program in Epidermal Differentiation.
Specimen part, Subject
View SamplesWe report the effects of silencing SRSF1 or ZMAT2 in human epidermal stem cells on the transcriptome of epidermal stem cells. We found that silencing ZMAT2 or SRSF1 affects global splicing, however, ZMAT2 seems to regulate splicing of a smaller more specific subset of genes. Overall design: RNA-sequencing data following silencing SRSF1 or ZMAT2
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.
Specimen part, Subject, Time
View SamplesWe report the effects of induction of differentiation in human epidermal stem cells on the splicing of the transcriptome. Overall design: RNA-sequencing data following induction of differentiation in human epidermal stem cells
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.
Specimen part, Treatment, Subject
View SamplesThe Golgi stress response is a homeostatic mechanism that augments the functional capacity of the Golgi apparatus when Golgi function becomes insufficient (Golgi stress). Three response pathways of the Golgi stress response have been identified in mammalian cells, the TFE3, HSP47 and CREB3 pathways, which augment the capacity of specific Golgi functions such as N-glycosylation, anti-apoptotic activity and pro-apoptotic activity, respectively. On the contrary, glycosylation of proteoglycans (PGs) is another important function of the Golgi, although the response pathway upregulating expression of glycosylation enzymes for PGs in response to Golgi stress remains unknown. Here, we found that expression of glycosylation enzymes for PGs was induced upon insufficiency of PG glycosylation capacity in the Golgi (PG-Golgi stress), and that transcriptional induction of genes encoding glycosylation enzymes for PGs was independent of the known Golgi stress response pathways and ER stress response. Promoter analyses of genes encoding these glycosylation enzymes revealed the novel enhancer element PGSE, which regulates their transcriptional induction upon PG-Golgi stress. From these observations, the response pathway we discovered is a novel Golgi stress response pathway, which we have named the PG pathway. Overall design: Three control samples (DMSO-treated) and three 4MU-xyloside-treated samples
PGSE Is a Novel Enhancer Regulating the Proteoglycan Pathway of the Mammalian Golgi Stress Response.
Sex, Specimen part, Cell line, Treatment, Subject
View Samples