The purpose of this study was to define biomarkers of sensitivty and mechanisms of resistance to the KDM1A/LSD1 inhibtor SP-2509 (HCI-2509) in Ewing sarcoma cell lines. We report that regardless of drug sensitivity all cell lines engage the UPR and ER-stress response following treatment with SP-2509 resulting in apoptotic cytotoxicity. In addition hypersentsitive cell lines shared a common basal transcriptnomic profile, with hypersensitive cell lines signficantly inducing ETS1 which was not observed in sensitive cell lines. Overall design: 6 Ewing sarcoma cell lines were treated with either vehicle control (DMSO) or the reversible LSD1/KDM1A inhibitor SP-2509 (2uM) for 48hrs. Three SP-2509 hypersensitive (IC50< 300nM)(A673, TC32, TC252) and three SP-2509 sensitive (IC50>900nM) (EWS-502, ES-2 and TC71) cell lines were investigated. Paired RNA from three indpendent experiments per cell line was analyzed.
Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response.
Treatment, Subject
View SamplesDifferentially expressed genes along the paraxial mesoderm of 12 somite stage zebrafish embryos are identified
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.
Specimen part
View SamplesWe previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as responder cells. In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (responder genes), but extremely low expression in the Pr-HP cells.
Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6.
Cell line
View SamplesThe Drosophila midgut is an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells’ (ISCs) ability to function in tissue homeostasis. Due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines, it has been a major challenge to study endogenous molecular changes of ISCs during aging. Our FACS-based approach using the esg-GAL4, UAS-GFP fly line allowed the isolation of a cell population enriched for ISCs from young and old midguts by their small size, little granularity and low GFP intensity. The isolated ISCs were subsequently used for RNA sequencing to identify endogenous changes in the transcriptome of young versus old ISCs. Overall design: Cell populations enriched for ISCs isolated from young (6-8 days old) and old (59-65 days old) midguts were sorted. Cells from three different batches of young and old midguts were subjected to Next Generation Sequencing using Illumina Genome Analyzer IIx.
Nipped-A regulates intestinal stem cell proliferation in <i>Drosophila</i>.
Age, Specimen part, Subject
View SamplesThe supraoptic nucleus (SON) of the hypothalamus is an important integrative brain structure that co-ordinates responses to perturbations in water balance and regulates maternal physiology through the release of the neuropeptide hormones vasopressin and oxytocin into the circulation. Both dehydration and lactation evoke a dramatic morphological remodelling of the SON, a process known as function-related plasticity. We hypothesise that some of the changes seen in SON remodelling are mediated by differential gene expression, and have thus used microarrays to document global changes in transcript abundance that accompany chronic dehydration in female rats, and in lactation. In situ hydridisation analysis has confirmed the differential expression of 3 of these genes, namely Tumour necrosis factor induced protein 6, Gonadotrophin inducible transcription factor 1 and Ornithine decarboxylase antizyme inhibitor 1. Comparison of differential gene expression patterns in male and female rats subjected to dehydration and in lactating rats has enabled the identification of common elements that are significantly enriched in gene classes with particular functions. Two of these are related to the requirement for increased protein synthesis and hormone delivery in the physiologically stimulated SON (translation initiation factor activity and endoplasmic reticulum-Golgi intermediate compartment respectively), whilst others are consistent with concept of SON morphological plasticity (collagen fibril organisation, extracellular matrix organization and biogenesis, extracellular structure organization and biogenesis and homophilic cell adhesion). We suggest that the genes co-ordinately regulated in the SON as a consequence of dehydration and lactation form a network that mediates the plastic processes operational in the physiologically activated SON.
Transcriptomic analysis of the osmotic and reproductive remodeling of the female rat supraoptic nucleus.
Sex, Specimen part, Treatment
View SamplesThere is an evident, unmet need to develop a commercially available in vitro system that can model inflammatory states of the liver and predict immune-mediated hepatotoxicity of drugs and xenobiotics taken under inflamed conditions. Hepatocyte-Kupffer cell co-cultures can model inflammation-mediated hepatotoxicity; however, Kupffer cell (KC) source remains an important bottleneck for the development of such models. Primary human Kupffer cells (PHKCs) are costly, limited in availability and exhibit donor variability. An alternative cell source for KCs has not been reported. Important paradigm shift from the classical dogma of adult blood-circulating monocyte-derived macrophages to intrahepatic precursor/fetal monocyte-derived macrophages has shed new light into the origin of KCs in vivo. Based on these recent findings, we report here, a novel method to generate human KCs in vitro from stem cells (hPSC-KCs) via fetal monocytes. hPSC-KCs expressed macrophage markers, CD11, CD14, CD68, CD163 and CD32 at gene and protein level and exhibited functional properties such as phagocytosis and Interleukin-6 and Tumor Necrosis Factor-4alpha production upon activation. Importantly, molecular signature, liver-macrophage specific CLEC-4F expression and cytokines production levels of hPSC-KCs were similar to PHKCs but different from non-liver macrophages. We used an inflammatory liver co-culture model to demonstrate that activated hPSC-KCs, but not non-liver macrophages, were able to recapitulate effects of PHKCs when stimulated with paradigm hepatotoxicants. hPSC-KCs developed in this study offer a renewable human cell source for liver-specific macrophages which can be used to develop in vitro systems for modelling the inflammatory state of the liver.
Generation of mature kupffer cells from human induced pluripotent stem cells.
Specimen part
View SamplesStem and progenitor cells are the critical units for tissue maintenance, regeneration, and repair. The activation of regenerative events in response to tissue injury has been correlated with mobilization of tissue-resident progenitor cells, which is functional to the wound healing process. However, until now there has been no evidence for the presence of cells with a healing capacity circulating in healthy conditions. We identified a rare cell population present in the peripheral blood of healthy mice that actively participates in tissue repair. These Circulating cells, with a Homing ability and involved in the Healing process (CH cells), were identified by an innovative flowcytometry strategy as small cells not expressing CD45 and lineage markers. Their transcriptome profile revealed that CH cells are unique and present a high expression of key pluripotency- and epiblast-associated genes. More importantly, CH-labeled cells derived from healthy Red Fluorescent Protein (RFP)-transgenic mice and systemically injected into syngeneic fractured wild-type mice migrated and engrafted in wounded tissues, ultimately differentiating into tissue-specific cells. Accordingly, the number of CH cells in the peripheral blood rapidly decreased following femoral fracture. These findings uncover the existence of constitutively circulating cells that may represent novel, accessible, and versatile effectors of therapeutic tissue regeneration.
Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites.
Sex, Specimen part
View SamplesVisceral leishmaniasis (VL), caused by Leishmania spp protozoan parasites, can provoke overwhelming and protracted epidemics, with high casefatality rates. Despite extensive efforts towards the development of an effective prophylactic vaccine, no promising vaccine is available yet for humans. Multi-epitope peptide based vaccine development is manifesting as the new era of vaccination strategies against VL. Aim of the study was the design of chimeric peptides from immunogenic L. infantum proteins for encapsulation in PLGA nanoparticles (NPs) alone or in combination with MPLA adjuvant, or in PLGA NPs surface modified with an octapeptide mimicking TNF-alpha for DCs targeting, in order to construct a peptide-based nanovaccine. The in vitro evaluation of the above nanoformulations was performed in DCs isolated from HLA-A2.1 transgenic mice. Characterization of DCs transcriptional responses to these vaccine candidates via microarrays could improve our understanding of their mechanisms of action on DCs' functional differentiation and the type of adaptive immunity subsequently induced.
A Poly(Lactic-<i>co</i>-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different <i>Leishmania infantum</i> Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8<sup>+</sup> T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.
Specimen part
View SamplesVisceral leishmaniasis (VL) caused by Leishmania donovani and L. infantum is a potentially fatal disease. To date there are no registered vaccines for disease prevention despite the fact that several vaccines are in preclinical development. Thus, new strategies are needed to improve vaccine efficacy based on a better understanding of the mechanisms mediating protective immunity and mechanisms of host immune responses subversion by immunopathogenic components of Leishmania. In the present study, determination of the immune mechanisms related to infection or protective immune responses against VL using an experimental nanovaccine as a vaccine model was conducted through microarray analysis.
Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice.
No sample metadata fields
View SamplesThe classical concept of bone marrow-derived mesenchymal stem cells (BM-MSC), intended as a uniform, broad potent population, is progressively being substituted by the idea that the bone marrow harbors heterogeneous populations of non-hematopoietic stem cells. This in vivo heterogeneity is also amplified by the different experimental strategies used to isolate/culture them. Among the exogenous factors described to affect MSC in vitro growth, basic-fibroblast growth factor (bFGF) is one of the most common growth factors used to expand stem cells. Moreover, it has been reported that its signaling is associated with the mainteinance of stemness of a variety of stem cells, included MSC. Using an ectopic model of bone regeneration, we have previously described that the implantation of cells with different commitment levels, differentially influences the capacity to recruit host cells, activating endogenous regenerative mechanisms. Due to its properties, we here demonstrate that the addition of bFGF to primary BM cultures, leads to the selection of specific subpopulations able to induce a different host regenerative response, when in vivo implanted in association with suitable ceramic scaffolds. Moreover, taking advantage of a multiparametric and comparative genomic and proteomic approach, it has been evaluated how different culture conditions combine to bring about appreciable changes in the secretome of the cells, that consequently influence their in vivo regenerative behaviour. The full comprehension of the regulatory mechanisms that rule the host response depending on the type and differentiative stage of the transplanted cells could help us to develop novel clinical strategies where host cells could directly contribute to regenerate the appropriate tissue.
The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model.
Specimen part, Disease
View Samples