Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs involved in the maturation of other RNA molecules and generally located in the introns of host genes. It is now emerging that altered sno/scaRNAs expression may play a pathological role in cancer. This study elucidates the patterns of sno/scaRNAs expression in multiple myeloma (MM), by profiling puri?ed malignant plasma cells from 55 MMs, 8 secondary plasma cell leukemias (sPCL) and 4 normal controls. Overall, a global sno/scaRNAs down-regulation was found in MMs and at more extent in sPCLs compared to normal plasma cells. Whereas SCARNA22 resulted the only sno/scaRNA characterizing the TC4 MM, TC2 group displayed a distinct sno/scaRNA signature overexpressing members of SNORD115 and SNORD116 families located in a region finely regulated by imprinting mechanism at 15q11. However, the imprinting center resulted overall hypomethylated in MMs independently of the SNORD115 and SNORD116 expression levels. Finally, integrative analyses with available gene expression and genome-wide data revealed the occurrence of significant sno/scaRNAs/host genes co-expression and the putative influence of allelic imbalances on specific snoRNAs expression. Our data extend the current view of sno/scaRNAs deregulation in cancer and add novel information into the bio-molecular complexity of plasma cell dyscrasias.
The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma.
Specimen part, Disease, Disease stage
View SamplesWe previously found that KLF4, a gene highly expressed in adult prostate stem cells, blocks the progression of indolent intraepithelial prostatic lesions into aggressive and rapidly growing tumors. To test whether this anti-cancer effect of KLF4 can also prevent prostate cancer-induced damage to the bone, we ablated KLF4 in human PC3 prostate cancer cells using CRISPR/Cas9-mediated genome editing and compared their behavior to null cells transduced with a DOX inducible KLF4 expression system. KLF4 re-expression inhibited growth of PC3 null cells in monolayer and as colonies in soft agar in a dose-dependent manner. When injected into the mouse femurs, PC3 null cells proliferated rapidly, forming very large, invasive and osteolytic tumors. Induction of KLF4 expression in PC3 null cells immediately after their intra-femoral inoculation blocked the development of tumors while preserving the normal bone architecture. KLF4 re-expression in established PC3 bone tumors inhibited osteolytic effects of PC3 null cells, preventing bone fractures and inducing a significant osteogenic response with regions of new bone formation. Transcriptome analyses of PC3 cells with no or high KLF4 expression revealed KLF4-dependent osteolytic or osteogenic transcriptional programs, respectively. Importantly, these KLF4-dependent functions significantly overlapped with metastatic prostate cancers in patients. Overall design: Uninfected PC3 KLF4 wild-type cells and uninfected PC3 KLF4 null cells were grown for 48 hours and collected for RNA extraction. Another cohort of PC3 KLF4 null cells was infected with lentiviruses expressing a DOX inducible KLF4 expression construct (BFP-T2A-hKLF4) or the control empty vector (BFP-T2A). After 48 hours, DOX (10 ng/ml) was added to the culture medium to induce KLF4 expression. Control and KLF4-overexpressing cells were collected for RNA extraction after a 48-hour incubation with DOX. Total RNA was extracted using the RNeasy kit (Qiagen, CA, USA). RNA-Seq libraries were prepared with the TruSeq sample preparation kit (Illumina, CA, USA).
KLF4 as a rheostat of osteolysis and osteogenesis in prostate tumors in the bone.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients.
Specimen part, Disease, Disease stage, Subject
View SamplesThe identification of deregulated miRNA in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In the present study, we take virtue of in silico integrative genomics analysis to generate an unprecedented global view of the transcriptional regulatory networks modulated in MM to define microRNAs impacting in regulatory circuits with potential functional and clinical relevance. miRNA and gene expression profiles in two large representative MM datasets, available from retrospective and prospective clinical trials and encompassing a total of 249 patients at diagnosis, were analyzed by means of two robust computational procedure to identify (i) relevant miRNA/transcription factors/target gene circuits in the disease and (ii) highly modulated miRNA-gene networks in those pathways enriched with miRNA-target gene interactions in specific MM subgroups. The analysis reinforced the pivotal role the miRNA cluster miR-99b/let-7e/miR-125a, specifically deregulated in MM patients with t(4;14) translocation, and disentangled its major relationships with transcriptional relevance. Integrated pathway analyses performed on the expression data of the MM patients stratified according to t(4;14) further allowed to define the pathway composed by the interactions that mainly characterize this MM subset and unravel connected pathways with putative role in the tumor biology.
Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients.
Disease, Disease stage
View SamplesMultiple myeloma (MM) is a malignant proliferation of bone marrow plasma cells (PCs) characterized by highly heterogeneous genetic background and clinical course, and whose pathogenesis remains largely unknown. Long ncRNAs (lncRNAs) are a large class of non-protein-coding RNA, involved in many physiological cellular and genomic processes as well as in carcinogenesis, cancer metastasis and invasion. Although still in its infancy, the knowledge of the role of lncRNAs in MM is progressively expanding. Besides studies on selected candidates, lncRNAs expression at genome-wide transcriptome level is confined to microarray technologies, thus investigating a limited collection of transcripts. Herein, we assessed the lncRNAs expression profiling by RNA-sequencing in a cohort of 30 MM patients, aimed at defining a comprehensive catalogue of lncRNAs specifically associated with the main MM molecular subgroups and genetic alterations. We identified 391 deregulated lncRNAs, 67% of which were also detectable and validated by whole-transcript microarrays. In addition, we identified a list of lncRNAs, with potential relevance in MM, co-expressed and in close proximity to genes that might undergo a cis-regulatory relationship. Overall design: Total RNA samples from highly purified plasma cells of 30 MM cases at onset
Expression Pattern and Biological Significance of the lncRNA ST3GAL6-AS1 in Multiple Myeloma.
Specimen part, Disease, Disease stage, Subject
View SamplesThe identification of deregulated miRNA in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In the present study, we take virtue of in silico integrative genomics analysis to generate an unprecedented global view of the transcriptional regulatory networks modulated in MM to define microRNAs impacting in regulatory circuits with potential functional and clinical relevance. miRNA and gene expression profiles in two large representative MM datasets, available from retrospective and prospective clinical trials and encompassing a total of 249 patients at diagnosis, were analyzed by means of two robust computational procedure to identify (i) relevant miRNA/transcription factors/target gene circuits in the disease and (ii) highly modulated miRNA-gene networks in those pathways enriched with miRNA-target gene interactions in specific MM subgroups. The analysis reinforced the pivotal role the miRNA cluster miR-99b/let-7e/miR-125a, specifically deregulated in MM patients with t(4;14) translocation, and disentangled its major relationships with transcriptional relevance. Integrated pathway analyses performed on the expression data of the MM patients stratified according to t(4;14) further allowed to define the pathway composed by the interactions that mainly characterize this MM subset and unravel connected pathways with putative role in the tumor biology.
Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients.
Specimen part, Disease, Subject
View SamplesMelphalan-induced modulation of miR-221/222 levels in MM cells. Melphalan-resistant U266/LR7 cells showed the highest induction of miR-221/222 after drug exposure. To study the transcriptome perturbation induced in MM cells following the combination of miR-221/222 inhibitors plus melphalan we used the whole gene expression data
A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.
Cell line, Treatment
View SamplesIn this study, we sought to identify the mRNAs associated to FMRP protein in mouse cortical neuron using a cross linking immunoprecipitation and microarray (CLIP-microarray).
Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.
Specimen part
View SamplesSmall nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs are non-coding RNAs involved in the maturation of other RNA molecules. Alterations of sno/scaRNA expression may play a role in cancerogenesis. This study elucidates the patterns of sno/scaRNA expression in highly purified cells from 211 chronic lymphocytic leukemia (CLL) patients (Binet stage A) also in comparison with those of different normal B-cell subsets. CLLs display a sno/scaRNAs expression profile similar to normal memory, nave and marginal-zone B-cells, with the exception of a few down-regulated transcripts (SNORA31, -6, -62, and -71C). Our analyses also suggest some heterogeneity in the pattern of sno/scaRNAs expression which is apparently unrelated to the major biological (ZAP-70 and CD38), molecular (IGHV mutation) and cytogenetic markers. Moreover, we found that SNORA70F was significantly down-regulated in poor prognostic subgroups and this phenomenon was associated with the down-regulation of its host gene COBLL1. Finally, we generated an independent model based on SNORA74A and SNORD116-18 expression, which appears to distinguish two different prognostic CLL groups. These data extend the view of sno/scaRNAs deregulation in cancer and may contribute to discover novel biomarkers associated with the disease and potentially useful to predict the clinical outcome of early stage CLL patients.
Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia.
No sample metadata fields
View SamplesThe biological role and therapeutic potential of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) are still to be investigated. Here, we studied the functional significance and the druggability of the oncogenic lncRNA MALAT1 in MM. Targeting MALAT1 by novel LNA-gapmeR anti-sense oligonucleotide antagonized MM cell proliferation and triggered apoptosis both in vitro and in vivo in a murine xenograft model of human MM. Of note, antagonism of MALAT1 dowmodulated the two major transcriptional activators of proteasome subunit genes, namely NRF1 and NRF2, and resulted in reduced trypsin, chymotrypsin and caspase-like proteasome activities and in accumulation of polyubiquitinated proteins. NRF1 and NRF2 decrease upon MALAT1-targeting was due to transcriptional activation of their negative regulator KEAP1, and resulted in reduced expression of anti-oxidant genes and increased ROS levels. In turn, NRF1 promoted MALAT1 expression thus establishing a positive feedback loop. Our findings demonstrate a crucial role of MALAT1 in the regulation of the proteasome machinery, and provide proof-of-concept that its targeting is a novel powerful option for the treatment of MM.
Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity.
Specimen part, Cell line, Time
View Samples