OsPSTOL1 confers phosphorus (P)-deficiency tolerance in rice through enhancement of early root growth. The larger root surface area at early stage provides the plants an advantage for nutrient uptake.
The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency.
Specimen part
View SamplesIndividuals expressing alpha-1-antitrypsin mutant Z protein accumulate misfolded, mutant protein in the liver and are at risk for liver diseases including cirrhosis and hepatocellular carcinoma. Transgenic PiZ mice, a model for this liver disease, display similar pathologies to humans, including inflammation, increases in proliferation, autophagy and apoptosis, accumulation of globules and develop fibrosis and hepatocellular carcinoma with age. Microarrays were used to compare the gene expressions of PiZ mice to wild-type mice in order to identify the pathways that are altered in this disorder.
Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency.
Sex, Specimen part
View SamplesTransgenic PiZ mice have been genetically engineered to express ATZ and have been a valuable experimental model for studing liver disease associated with AAT deficiency. ATZ accumulates in these mice within the ER of hepatocytes in a nearly identical manner to livers of affected patients. To investigate the pathogenesis of liver damage induced by ATZ, we performed gene expression analysis in livers of 6-week-old PiZ mice and strain-, age-, and gender-matched wild-type mouse controls. All samples were processed on Affymetrix Mouse 430A 2.0 arrays using GeneChip 3-IVT Plus and Hybridization Wash and Stain kits by means of Affymetrixs standard protocols. The analysis indicated that most genes upregulated in PiZ livers were associated with response to unfolded proteins, ER nuclear signaling pathway, and response to protein stimulus.
Activation of the c-Jun N-terminal kinase pathway aggravates proteotoxicity of hepatic mutant Z alpha1-antitrypsin.
Specimen part
View SamplesDuring pregnancy, pancreatic islets undergo structural and functional changes that lead to enhance insulin release in response to increased insulin demand, which is rapidly reversed at parturition. One of the most important changes is expansion of pancreatic -cell mass mainly by increased proliferation of cells.
Serotonin regulates pancreatic beta cell mass during pregnancy.
Specimen part, Time
View Samples