Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an inherited neurodegenerative disease with myoclonus, seizures and ataxia, caused by the mutations in cystatin B (CSTB) gene. In an approach towards understanding the molecular basis of pathogenic events in EPM1 we have utilized the cystatin B deficient mice (Cstb-/-), a model for the disease. We have characterized the gene expression changes from the cerebellum of Cstb-/- mouse at postnatal day 7 (P7) and P30 as well as in cultured cerebellar granule cells using a pathway-based approach. A marked upregulation of immune response genes was seen at P30, reflecting the ongoing neuropathology, however, the observed alterations in complement cascade genes could also imply defects in synaptic plasticity. Differentially expressed genes in pre-symptomatic Cstb-/- animals at P7 were connected to synaptic function and plasticity and in cultured cerebellar granule cells to cellular biogenesis, cytoskeleton and intracellular transport. Especially GABAergic pathways were affected.
Gene expression alterations in the cerebellum and granule neurons of Cstb(-/-) mouse are associated with early synaptic changes and inflammation.
Sex, Specimen part
View SamplesIn this study, genome-wide gene expression profiles of primary hepatocytes and liver sinusoidal endothelial cells (LSECs) were measured at day 12 for each cell culture system using Affymetrix GeneChips and analyzed via Gene Set Enrichment Analysis (GSEA). The culture systems analyzed include the commonly used collagen sandwich and monolayers of hepatocytes, as well as 3-dimensional (3D) engineered liver models that contain hepatocytes and LSECs (3DHL) and hepatocytes, LSECs, and Kupffer cells (3DHLK). Our results highlight the up-regulation of several hepatocyte specific functions in hepatocytes and a novel interplay between Ppara signaling and bile acid biosynthesis in LSECs.
Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver Models.
Specimen part, Time
View SamplesWe have developed a computational approach that uses self-organizing maps for integrative genomic analysis. We utilize this approach to identify the single-cell chromatin and transcriptomic profiles during mouse pre-B cell differentiation. Overall design: We use the C1 Fluidigm system to profile gene expression and chromatin accessibility in single-cells during pre-B cell differentiation.
Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps.
Specimen part, Subject
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesReliable clinical tests for predicting cancer chemotherapy response are not available and individual markers failed to correctly predict resistance against anticancer agents. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can be used as a classification tool for chemoresistance and provide novel candidate genes involved in anthracycline resistance mechanisms. We contrasted the expression profiles of 4 different human tumor cell lines of gastric, pancreatic, colon and breast origin and of their counterparts resistant to the topoisomerase inhibitors daunorubicin or doxorubicin. We also profiled the sensitive parental cells treated with doxorubicin for 24h. We interrogated Affymetrix HGU133A and U95A arrays independently. We applied two independent methods for data normalization and used Prediction Analysis of Microarrays (PAM) for feature selection. In addition, we established data sets related to drug resistance by using a virtual array composed of features represented on both types of oligonucleotide arrays. We identified 71 candidate genes associated with doxorubicine/daunorubicine resistance. To validate the microarray data, we also analyzed the expression of 12 selected genes by quantitative RT-PCR or immunocytochemistry, respectively. While the comparison of drug-sensitive versus drug-resistant cells yields candidates associated with drug resistance, the 24h treatment of sensitive parental cells produced a distinct transcriptional profile related to short-term drug effects.
PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer.
No sample metadata fields
View SamplesEffect of injury and Pseudomonas aeruginosa inoculation in Drosophila melanogaster
Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma.
Sex, Time
View SamplesGene expression profiles from the aortic arch of Ldlr-/-Apob100/100 Mttpflox/flox Mx1-Cre mice at different stages of atherosclerosis development
Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.
Age, Specimen part
View SamplesWe isolated CD4+ T cells from draining lymph nodes 7 days post EAE from
Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis .
Sex, Specimen part
View SamplesTissue samples have been isolated during corornary artery by-pass grafting (CABG)surgery from the atheroscelrotic arterial wall (AAW, aortic root puncture for proxmal ligation of by-pass vessel), non-atherosclertoci arterial wall (NAAW, distal part of mammary artery used a graft for LAD), liver, skeletal muscle (Recturs m), pericardial mediastinal visceral fat) in CAD patients. Carotid lesions samples from 25 validation patients.
Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study.
Specimen part
View Samples