This SuperSeries is composed of the SubSeries listed below.
Pretreatment microRNA Expression Impacting on Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck Cancer Cell Lines and Patients.
Sex, Specimen part, Cell line
View SamplesPurpose: Predominant causes of head and neck cancer recurrence after radiotherapy are rapid repopulation, hypoxia, fraction of cancer stem cells and intrinsic radioresistance. Currently, intrinsic radioresistance can only be assessed by ex-vivo colony assays. Besides being time-consuming, colony assays do not identify causes of intrinsic resistance. We aimed to identify a biomarker for intrinsic radioresistance to be used before start of treatment and to reveal biological processes that could be targeted to overcome intrinsic resistance.
Pretreatment microRNA Expression Impacting on Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck Cancer Cell Lines and Patients.
Specimen part, Cell line
View SamplesPurpose: Predominant causes of head and neck cancer recurrence after radiotherapy are rapid repopulation, hypoxia, fraction of cancer stem cells and intrinsic radioresistance. Currently, intrinsic radioresistance can only be assessed by ex-vivo colony assays. Besides being time-consuming, colony assays do not identify causes of intrinsic resistance. We aimed to identify a biomarker for intrinsic radioresistance to be used before start of treatment and to reveal biological processes that could be targeted to overcome intrinsic resistance.
Pretreatment microRNA Expression Impacting on Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck Cancer Cell Lines and Patients.
Specimen part
View SamplesNo description.
MicroRNA sequence and expression analysis in breast tumors by deep sequencing.
No sample metadata fields
View SamplesTo guarantee blood supply throughout adult life hematopoietic stem cells (HSCs) need to carefully balance between self-renewing cell divisions and quiescence. Identification of genes controlling HSC self-renewal is of utmost importance given that HSCs are the only stem cells with broad clinical applications. Transcription factor PU.1 is one of the major regulators of myeloid and lymphoid development. Recent reports suggest that PU.1 mediates its functions via gradual expression level changes rather than binary on/off states. So far, this has not been considered in any study of HSCs and thus, PU.1s role in HSC function has remained largely unclear. Here we demonstrate using hypomorphic mice with an engineered disruption of an autoregulatory feedback loop that decreased PU.1 levels resulted in loss of key HSC functions, all of which could be fully rescued by restoration of proper PU.1 levels via a human PU.1 transgene. Mechanistically, we found excessive HSC cell divisions and altered expression of cell cycle regulators whose promoter regions were bound by PU.1 in normal HSCs. Adequate PU.1 levels were maintained by a mechanism of direct autoregulation restricted to HSCs through a physical interaction of a -14kb enhancer with the proximal promoter. Our findings identify PU.1 as novel regulator controling the switch between cell division and quiescence in order to prevent exhaustion of HSCs. Given that even moderate level changes greatly impact stem cell function, our data suggest important therapeutic implications for leukemic patients with reduced PU.1 levels. Moreover, we provide first proof, that autoregulation of a transcription factor, PU.1, has a crucial function in vivo. We anticipate that our concept of how autoregulation forms an active chromosomal conformation will impact future research on transcription factor networks regulating stem cell fate.
Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells.
Specimen part
View SamplesLifelong murine gene expression profiles in relation to chronological and biological aging in multiple organs
Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs.
Age, Specimen part
View SamplesPolymorphonuclear cells (neutrophils) play an important role in the systemic inflammatory response syndrome and the development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage. Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n=4) administered a single dose of endotoxin (LPS, 2 ng/kg iv). In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNF, G-CSF and GM-CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in signaling of TNF and IL-1 and IL-1. The transcriptome profile of inflammatory activated neutrophils in vivo reflects extended survival and regulation of inflammatory responses. We show that these changes in neutrophil transcriptome are most likely due to a combination of early activation of circulating neutrophils by TNF and G-CSF and a mobilization of young neutrophils from the bone marrow.
Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia.
Specimen part
View SamplesMicroarray expression analysis of mouse ESCs treated with the MYCi 10058-F4.
Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause.
Specimen part
View SamplesThe goal of this study was to determine how decreased mitochondrial citrate export influences gene expression in Drosophila larvae. RNA was isolated from Drosopohila sea mutants, which exhibiti decreased mitochondrial citrate transport activity, and a genetically-matched control strain during mid-L3 development. Overall design: Larvae were collected as described in Li, H., Tennessen, J. M. Preparation of Drosophila Larval Samples for Gas Chromatography-Mass Spectrometry (GC-MS)-based Metabolomics. J. Vis. Exp. (136), e57847, doi:10.3791/57847 (2018). RNA was purified from staged mid-L3 larvae using a RNeasy Mini Kit (Qiagen). Sequencing was performed using an Illumina NextSeq500 platform with 75 bp sequencing module generating 41 bp paired-end reads. After the sequencing run, demultiplexing was performed with bcl2fastq v2.20.0.422.
A <i>Drosophila</i> model of combined D-2- and L-2-hydroxyglutaric aciduria reveals a mechanism linking mitochondrial citrate export with oncometabolite accumulation.
Subject
View SamplesInducible co-stimulator (ICOS) interaction with its ligand (ICOSL) is involved in several T cell effector functions. While blockade of ICOS:ICOSL interaction in chronic graft versus host disease (GVHD) seems benefi cial, results for acute GVHD remain controversial. To further elucidate its role in acute GVHD, C57BL / 6 mice were lethally irradiated and reconstituted with allogeneic spleen cells in the absence or presence of ICOSL-blocking mAb. Mice reconstituted with allogeneic spleen cells experienced severe GVHD and died untreated within 6 9 days after transplantation. Mice treated with an anti-ICOSL mAb starting from day 3 after transplantation gained weight again and survived for at least additional 12 days, although the treatment was already stopped at day 11 after transplantation. In contrast, the anti-ICOSL treatment starting from day 0 did not prevent GVHD. The diff erence between therapeutic (day 3) and prophylactic (day 0) anti-ICOSL treatment was independent of CD25 + CD4 + regulatory T cells since their depletion did not abrogate the therapeutic eff ect of ICOSL blockade. Microarray analysis revealed IFN- and chemokine up-regulation in spleen cells of prophylactically treated mice, emphasizing kinetic dependence of acute GVHD modulation via blockade of ICOS:ICOSL interaction.
Only therapeutic ICOS:ICOSL blockade alleviates acute graft versus host disease.
Sex, Specimen part
View Samples