Embryonic stem cell derived microglia (ESdM) were treated with different inflammatory stimulants to analyze their ability to adopt different activation states. These were characterized using ELISA, flow cytometry, quantitative real time PCR, and RNA-sequencing. Overall design: Analysis of cytokine secretion, cell surface marker, gene expression, and RNA-seq expression data of differentially activated ESdM
Characterization of inflammatory markers and transcriptome profiles of differentially activated embryonic stem cell-derived microglia.
No sample metadata fields
View SamplesHypoxia is known to regulate tumor-initiating cells and to have an effect on miRNA expression. We were interested in studying the role of hypoxia-induced miR-210 in colorectal cancer patient-derived sphere cultures.
Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production.
Specimen part
View SamplesBackground: Zidovudine remains the cornerstone drug for prophylaxis to prevent mother-to-child HIV-1 transmission. A mild but long-lasting hematological multilineage defect is observed in children exposed in utero.
Genotoxic signature in cord blood cells of newborns exposed in utero to a Zidovudine-based antiretroviral combination.
Specimen part, Treatment
View SamplesCD133 (Prominin1) is pentaspan transmembrane glycoprotein expressed in several stem cell populations and cancers. Reactivity with an antibody (AC133) to a glycoslyated form of CD133 has been widely used for the enrichment of cells with tumor initiating activity in xenograph transplantation assays. We have found by fluorescence-activated cell sorting that increased AC133 reactivity in human embryonic stem cells, colon cancer and melanoma cells is correlated with increased DNA content and reciprocally, that the least reactive cells are in the G1/G0 portion of the cell cycle. Continued cultivation of cells sorted on the basis of high and low AC133 reactivity results in a normalization of the cell reactivity profiles indicating that cells with low AC133 reactivity can generate highly reactive cells as they resume proliferation. The association of AC133 with actively cycling cells may contribute to the basis for enrichment for tumor initiating activity.
Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines.
No sample metadata fields
View SamplesGene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).
Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.
Sex, Specimen part
View SamplesMouse erythroid progenitors (EP) in comparison to granulocyte/monocyte - macrophage progenitors (GMP) from 10 - 16 week old C57/Bl6 - S129Ola (mixed genetic background) purified by flow cytometry
Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E).
No sample metadata fields
View SamplesFumarate hydratase (FH) mutations predispose to renal cysts cancer. These cancers overexpress hypoxia-inducible factor-alpha (Hif-1a). We have generated a conditional Fh1 (mouse FH) knockout mice that develop renal cysts and overexpress Hif-1a. In order to identify the contribution of Hif-1a to cyst formation we have intercrossed our mice with conditional HIf-1a KO mice.
Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling.
Age
View SamplesSeveral recently emerging ChIP-seq (chromatin immunoprecipitation followed by sequencing) based methods perform chemical steps on bead-bound immunoprecipitated chromatin, posing a challenge for generating similarly treated input controls required for bioinformatics and data quality analyses. Here we present a versatile method for producing technique-specific input controls for ChIP-based methods that utilize additional bead-bound processing steps. Application of this method allowed for discovery of a novel CTCF binding motif from ChIP-exo data. Overall design: HeLa cells were transfected with either a scrambled siRNA or one of two CTCF siRNAs (Thermo Fisher Scientific ? Life technologies) using Lipofectamine RNAiMAX (Thermo Fisher Scientific - Life technologies) and incubated for 24 hr.
PAtCh-Cap: input strategy for improving analysis of ChIP-exo data sets and beyond.
Cell line, Subject
View SamplesThe emerging correlation between aberrant DNA methylation patterns leading to transcriptional responses that promote and progress many cancers has prompted an interest in discerning the associated regulatory mechanisms. ZBTB33 (also known as Kaiso) is a specialized transcription factor that selectively recognizes mCpG-containing sites as well as a sequence-specific DNA target (termed the KBS) utilizing three Cys2His2 zinc fingers. Increasing reports link ZBTB33 overexpression and transcriptional activities with metastatic potential and poor prognosis, though the specific cellular consequences appear to be dependent on disease phenotype. There is currently little mechanistic insight into how various cellular phenotypes are then able to harness the transcriptional capabilities of ZBTB33 to differentially promote and progress the disease state. Here we have mechanistically interrogated the cell cycle responses mediated by the transcriptional activities of ZBTB33 in two different cell lines. Utilizing a series of ZBTB33 depletion and overexpression studies, we have determined that in HeLa cells ZBTB33 directly occupies the promoter regions of cyclin D1 and cyclin E1 in a KBS and methyl-specific manner, respectively, inducing increased proliferation by promoting RB1 hyper-phosphorylation, allowing for E2F transcriptional activity that coordinates an accelerated G1- to S-phase transition. Conversely, in HEK293 cells ZBTB33 indirectly regulates Cyclin E abundance resulting in reduced RB1 phosphorylation, decreased E2F activity and a decelerated transition through G1-phase. Thus, we have identified a novel mechanism by which ZBTB33 directly mediates the highly coordinated cyclin D1/cyclin E1/RB1/E2F signaling pathway controlling the passage through the G1-phase restriction point and accelerating cellular proliferation in a cancer cell line. Overall design: Determination of cellular and transcriptional consequences for ZBTB33 depletion in HeLa cells.
Cell-specific Kaiso (ZBTB33) Regulation of Cell Cycle through Cyclin D1 and Cyclin E1.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nos3-/- iPSCs model concordant signatures of in utero cardiac pathogenesis.
Specimen part, Time
View Samples