This SuperSeries is composed of the SubSeries listed below.
Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction.
Specimen part, Treatment
View SamplesValproic acid (VPA) is a very potent anti-cancer and neuro-protective drug. However, exposure to VPA may cause accumulation of lipids in the liver which could result in the development of steatosis. As VPA is a fatty acid analogue, most of the performed studies focus on inhibition of the mitochondrial b-oxidation pathway as the possible mode of action. However, investigations exploring the contribution of other processes in particular by using whole genome studies in a relevant human liver model are limited. Furthermore, the contribution of gene expression regulation by DNA methylation changes and/or miRNA changes is hardly known. Therefore, in the present study, we investigated the effect of repetitive VPA exposure on primary human hepatocytes (PHH) on whole genome gene expression-, DNA methylation-, and miRNA changes, using microarrays and integrated data analyses. PHH were exposed to a non-cytotoxic dose of 15 mM VPA for 5 days daily thereby inducing accumulation of lipids. Part of the PHH was left untreated for an additional 3 days in order to study the persistence of changes. VPA modulated the expression of a number of nuclear receptors and their target genes, leading to disturbed fatty acid metabolism and - uptake, ultimately leading to accumulation of triglycerides in the liver which is the key event leading to steatosis. Part of the gene expression changes was epigenetically regulated. Furthermore, after terminating the treatment, the expression and DNA methylation changes of several genes remained persistent, indicating a permanent change in the PHH, causing steatosis development to continue and/or making the PHH more sensitive for steatosis development during a subsequent exposure.
Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction.
Specimen part, Treatment
View SamplesRNASeq data from WT, Zmym2 knockout- and Zmym2 overexpressing- E14tg2a mouse embryonic stem cells Overall design: RNASeq of ESCs in medium containing Serum and Leukaemia Inhibitory Factor (LIF)
ZMYM2 inhibits NANOG-mediated reprogramming.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesNanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesNanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesTechnologies allowing for specific regulation of endogenous genes are valuable for the study of gene functions and have great potential in therapeutics. We created the CRISPR-on system, a two-component transcriptional activator consisting of a nuclease-dead Cas9 (dCas9) protein fused with a transcriptional activation domain and single guide RNAs (sgRNAs) with complementary sequence to gene promoters. We demonstrate that CRISPR-on can efficiently activate exogenous reporter genes in both human and mouse cells in a tunable manner. In addition, we show that robust reporter gene activation in vivo can be achieved by injecting the system components into mouse zygotes. Furthermore we show that CRISPR-on can activate the endogenous IL1RN, SOX2, and OCT4 genes. The most efficient gene activation was achieved by clusters of 3 to 4 sgRNAs binding to the proximal promoters suggesting their synergistic action in gene induction. Significantly, when sgRNAs targeting multiple genes were simultaneously introduced into cells, robust multiplexed endogenous gene activation was achieved. Genome-wide expression profiling demonstrated high specificity of the system.
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system.
Cell line
View SamplesNaïve human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X-chromosome state has remained unresolved. We found that the inactive X-chromosome (Xi) of primed hESCs was reactivated in naïve culture conditions. Similar to cells of the blastocyst, resulting naive cells exhibited two active X-chromosomes with XIST expression and chromosome-wide transcriptional dampening, and initiated XIST-mediated X-inactivation upon differentiation. Both establishment and exit from the naïve state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X-chromosome dosage compensation processes in early human development: X-dampening and X-inactivation. Furthermore, the naïve state reset Xi abnormalities of primed hESCs, providing cells better suited for downstream applications. However, naïve hESCs displayed differences to the embryo because XIST expression was predominantly mono-allelic instead of bi-allelic, and X-inactivation was non-random, indicating the need for further culture improvement. Overall design: Differentiated naïve human embryonic stem cells and naïve human embryonic stem cells at different passages (Exp1 for late passage, Exp2 for early passage) were subjected to single cell RNA sequencing by the Fluidigm C1 Single-Cell Auto Prep System.
Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma.
Specimen part, Disease, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma.
Specimen part
View Samples