Notch intracellular domain (NICD) is the active form of the Notch receptor. In this mouse model, NICD is inserted in the Rosa26 locus downstream of a loxP-STOP-LoxP (lsl) sequence and therefore NICD expression is dependant on Cre recombinase expression. These mice are crossed with the AFP-Cre strain that expresses Cre in hepatoblasts due to its regulation by the AFP promoter and albumin enhancer. Mice from 6 to 12 months are sacrificed and liver RNA samples from control monotransgenic Rosa26-lsl-NICD and confirmed HCC lesions from bitransgenic AFP-Cre/Rosa26-lsl-NICD (AFP-NICD) are obtained. Exon expression profiling of these samples are submitted.
Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice.
Age, Specimen part
View SamplesGene expression profiles of 75 tissue samples were analyzed representing the stepwise carcinogenic process from pre-neoplastic lesions (cirrhosis and dysplasia) to HCC, including four neoplastic stages (very early HCC to metastatic tumors) from patients with HCV infection. Gene signatures that accurately reflect the pathological progression of disease at each stage were identified and potential molecular markers for early diagnosis uncovered. Pathway analysis revealed dysregulation of the Notch and Toll-like receptor pathways in cirrhosis, followed by deregulation of several components of the Jak/STAT pathway in early carcinogenesis, then up-regulation of genes involved in DNA replication and repair and cell cycle in late cancerous stages.
Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene-expression signature of vascular invasion in hepatocellular carcinoma.
Sex, Age, Specimen part
View SamplesUHRF1 is an essential regulator of DNA methylation that is highly expressed in many cancers. Using transgenic zebrafish, cultured cells and human tumors, we demonstrate that UHRF1 is an oncogene. RNAseq was used to assess the variation in gene expression between control and experimental samples. Overall design: Total small RNA from 2 batches of Tg(fabp10:has.UHRF1-GFP)High and age matched Tg(fabp10:nls-mCherry) control 5 dpf zebrafish livers was purified for preparation of high-throughput sequencing libraries.
UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma.
No sample metadata fields
View SamplesHepatocellular carcinoma (HCC) is a complex and heterogeneous tumor due to activation of multiple cellular pathways and molecular alterations. Herein, we report the first molecular classification of 89 HCC based on the expression of 358 microRNAs and integrative genomic analysis. Three main subclasses of HCC were identified : two of them were associated with beta-catenin mutations or aggressive phenotype. A subset of the subclass of aggressive tumors (8/89, 9%) showed overexpression of a cluster of microRNAs located on chr19q13.41 (C19MC locus. We showed that miR 517a, representing C19MC, promoted cell proliferation, migration and invasion in vitro and induced the development of aggressive tumors in vivo suggesting its role as a novel oncogenic driver in HCC.
MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a.
Sex, Age, Specimen part
View SamplesmRNA expression profile modified by stable transfection of microRNA mir-517a (MIR517A) in a human hepatocellular carcinoma cell line Huh-7
MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a.
No sample metadata fields
View SamplesThe data are derived from anonymized patient samples for which demographic information is not provided
Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.
Sex, Age
View SamplesTo characterize the genetic alterations that instigate hepatitis C virus-induced hepatocellular carcinoma (HCC), we conducted an integrative genomic analysis of 103 HCCs. Most tumors harbored 1q gain, 8q gain or 8p loss, with occasional alterations in 13 additional chromosome arms. In addition to amplifications at 11q13 in 6 tumors, 4 tumors harbored focal gains at 6p21 incorporating VEGFA, which were confirmed in 4 of 113 HCC in an independent validation set. Strikingly, this locus overlapped with copy gains in 4 of 371 lung adenocarcinomas. Overexpression of VEGFA via 6p21 gain suggested a cell-nonautonomous mechanism of oncogene activation. Hierarchical clustering of gene expression among 91 tumors identified 5 classes, including Wnt-CTNNB1, proliferation and interferon-related gene classes. We also discovered a novel class defined by polysomy of chromosome 7, gains of which were associated with early tumor recurrence after resection. These findings reveal key alterations in HCC pathogenesis and implicate potential therapeutic targets.
Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classification is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View Samples