The transition from progenitor to differentiated cells is critical for successful organogenesis; subtle alterations in this process can lead to developmental disorders. The anterior heart field (AHF) encompasses a niche in which cardiac progenitors maintain their multipotent and undifferentiated nature by signals from the surrounding tissues, which thus far have been poorly defined. Using systems biology approaches and perturbations of signaling molecules in chick embryos, we revealed a tight crosstalk between the bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways within the AHF: BMP4 promotes myofibrillar gene expression and cardiomyocyte contractions, by blocking FGF signaling. Furthermore, inhibition of the FGF-ERK pathway is both sufficient and necessary for these processes, suggesting that FGF signaling blocks premature differentiation of cardiac progenitors in the AHF. Investigating the molecular mechanisms downstream to BMP signaling revealed that BMP4 induced a set of neural crest-related genes; including MSX1, which was sufficient to induce cardiomyocyte differentiation. We suggest that BMP and FGF signaling pathways act via inter- and intra-regulatory loops in multiple tissues, to coordinate the balance between proliferation and differentiation of cardiac progenitors.
BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors.
No sample metadata fields
View SamplesDuring its long infection cycle, human cytomegalovirus (HCMV) extensively manipulates cellular gene expression to maintain conditions favorable for viral propagation. In order to reveal the signature of cellular genes that are manipulated by HCMV, we measured RNA abundance and rate of protein production through the course of HCMV infection. We characterized changes for most expressed cellular genes and although much of the regulation was transcriptional we uncover diverse and dynamic translational regulation for subsets of host genes, revealing unappreciated coordination in translational control that suggests common regulators Overall design: Ribosome profiling and mRNA-seq along HCMV infection
The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions.
No sample metadata fields
View SamplesA cell supsension containing an equal mix of HEK and 3T3 cells was used in the Fluidigm C1 Overall design: Suspensions of 3T3 and HEK cells were diluted down to a concentration of 250,000 per mL and mixed 1:1, then loaded onto two medium C1 cell capture chips.
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
No sample metadata fields
View SamplesWe introduced genome-wide pooled CRISPR-Cas9 libraries into primary mouse dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (TNF) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the TLR4 pathway. We found many of the known regulators of TLR4 signaling, as well as dozens of previously unknown candidates that we validated. Overall design: We used stain base phenotype (staining for TNF) in order to search for negative and positive regulators of LPS response in differentiated BMDCs
A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks.
No sample metadata fields
View SamplesWhole fetal livers were collected from mouse fetuses at embryonic day 14.5 (E14.5), and single-cell suspensions were prepared by successive passage through 18-, 21 and 23-gauge needles. Fetal liver cells were maintained in Dulbecco modified Eagle medium (DMEM; Invitrogen) supplemented with 10% fetal bovine serum (FBS; Invitrogen), 100 U/ml penicillin, 100g/ml streptomycin, and 50ng/ml recombinant human thrombopoietin (TPO; Peprotech). After 5 days of culture, megakaryocytes were purified using a discontinuous bovine serum albumin gradient (BSA, SigmaAldrich; 3%, 1.5%, and 0%). Total RNA was isolated with TriReagent (MRC) following manufacturers instructions, and its quality was assessed with ND1000 Nanodrop (Peqlab) and on a 1.5% agarose gel.
miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis.
Specimen part
View SamplesThe cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.
Mesenchymal stem cell features of Ewing tumors.
Specimen part
View SamplesUsing single-cell RNA-seq of intestinal epithelial cells we identify surprising expression of MHC class II, which participates in a novel interaction between gut-resident CD4+ T cells and epithelial stem cells, governing the balance between stem cell differentiation and renewal. Overall design: In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.
T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesHomeostatic programs maintain equilibrium between immune protection, and selftolerance. Such mechanisms impact autoimmunity and tumor formation, respectively. How tissue homeostasis is maintained, and impacts tumor surveillance is unknown. Here we identify that mononuclear phagocytes share conserved programming during homeostatic differentiation, and entry into tissue. IFN is necessary and sufficient to induce these transcripts, revealing a key instructive role. Remarkably, homeostatic and IFN-dependent programs enrich across primary human tumors, including melanoma, and stratify metastatic melanoma survival. Single-cell RNA-sequencing reveals enrichment of these modules in monocytes and DCs in human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2), a highly conserved transcript in this program is induced by IFN, and expressed in mononuclear phagocytes infiltrating primary melanoma. SOCS2 limits DC adaptive anti-tumoral immunity and T cell priming in vivo, indicating a critical regulatory role. Our findings link homeostasis in peripheral tissue to anti-tumoral immunity and escape, revealing coopting of tissue-specific immune development in the tumor microenvironment.
IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment.
Specimen part, Disease, Disease stage
View SamplesThe identification of subtype-specific translocations has revolutionized diagnostics of sarcoma and provided new insight into oncogenesis. We used RNA-Seq to investigate samples diagnosed as small round cell tumors of bone, possibly Ewing sarcoma, but lacking the canonical EWSR1-ETS translocation. A new fusion was observed between the BCL6 co-repressor (BCOR) and the testis specific cyclin B3 (CCNB3) genes on chromosome X. RNA-Seq results were confirmed by RT-PCR and cloning the tumor-specific genomic translocation breakpoints. 24 BCOR-CCNB3-positive tumors were identified among a series of 594 sarcomas. Gene profiling experiments indicate that BCOR-CCNB3-positive cases are biologically distinct from other sarcomas, particularly Ewings sarcoma. Finally, we show that CCNB3 immunohistochemistry is a powerful diagnostic marker for this group of sarcoma and that over-expression of BCOR-CCNB3 or of a truncated CCNB3 activates S-phase in NIH3T3 cells. Thus the intrachromosomal X fusion described here represents a new subtype of bone sarcoma caused by a novel gene fusion mechanism.
A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion.
Sex, Age, Specimen part
View SamplesIdentification of druggable targets is a prerequisite for developing targeted therapies against Ewing sarcoma. We report the identification of Protein Kinase C Beta (PRKCB) as a protein specifically and highly expressed in Ewing sarcoma as compared to other pediatric cancers. Its transcriptional activation is directly regulated by the EWSR1-FLI1 oncogene. Getting insights in PRKCB activity we show that, together with PRKCA, it is responsible for the phosphorylation of histone H3T6, allowing global maintenance of H3K4 trimethylation on a variety of gene promoters. In the long term, PRKCB RNA interference induces apoptosis in vitro. More importantly, in xenograft mice models, complete impairment of tumor engraftment and even tumor regression were observed upon PRKCB inhibition, highlighting PRKCB as a most valuable therapeutic target. Deciphering PRKCB roles in Ewing sarcoma using expression profiling, we found a strong overlap with genes modulated by EWSR1-FLI1 and an involvement of RPKCB in regulating crucial signaling pathways. Altogether, we show that PRKCB may have two important independent functions and should be considered as highly valuable for understanding Ewing sarcoma biology and as a promising target for new therapeutic approaches in Ewing sarcoma.
Targeting the EWSR1-FLI1 oncogene-induced protein kinase PKC-β abolishes ewing sarcoma growth.
Cell line
View Samples