Transcriptome analysis revealed that GDF15 and TGF-ß stimulation displayed similar expression patterns in differentially expressed genes. Overall design: GDF15 or TGF-ß stimulated NIH3T3 fibroblasts transcriptomes were analyzed by RNA-sequencing.
Combined Secretomics and Transcriptomics Revealed Cancer-Derived GDF15 is Involved in Diffuse-Type Gastric Cancer Progression and Fibroblast Activation.
No sample metadata fields
View SamplesHemogenic endothelium (HE) is the source of HSCs in the developing embryo. In this study we have identified the hemogenic endothelial progenitors and their precursors originating from differentiated H1 cells on OP9 stromal cells. Overall design: RNA-seq of hemogenic endothelial progenitors and their precursors originating from differentiated H1 cells on OP9 stromal cells.
Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures.
Specimen part, Subject
View SamplesNIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase
A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition.
Cell line
View SamplesHigh levels of Hes1 expression are frequently found in BCR-ABL-positive chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BClike disease; however the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-kB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of Hes1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, these CMPs secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BClike disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.
Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells.
Specimen part
View SamplesIn the present study, we employed Affymetrix Staphylococcus aureus GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Staphylococcus aureus to Ortho-Phenylphenol, which involved initial growth inhibition and metabolism.
Microarray analysis of toxicogenomic effects of ortho-phenylphenol in Staphylococcus aureus.
No sample metadata fields
View SamplesIn the present study, we employed Affymetrix Staphylococcus aureus GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Staphylococcus aureus to triclosan, which involved initial growth inhibition and metabolism.
Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus.
No sample metadata fields
View SamplesIn the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to ortho-phenylphenol, which involved initial growth inhibition and metabolism.
Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol.
No sample metadata fields
View SamplesIn the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to Chlorhexidine diacetate, which involved initial growth inhibition and metabolism.
Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate.
No sample metadata fields
View SamplesRecurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.
Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations.
Cell line, Treatment
View SamplesRecurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.
Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations.
Specimen part
View Samples