Cidofovir is an acyclic nucleoside phosphonate with strong antiviral activity against a broad spectrum of DNA viruses. Although it has previously been shown that cidofovir exerts an antiproliferative effect on HPV positive cells by the induction of apoptosis, the exact mechanism of action remains to be unraveled. In order to study the activity of cidofovir against HPV, gene expression profiling was performed in cidofovir-treated and cidofovir-resistant HeLa, HaCaT, and PHK cells by means of microarrays (HG-U133 Plus 2, Affymetrix).
Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage.
Specimen part, Disease, Cell line
View SamplesMost cancer deaths are caused by metastases, which are the end-results of circulating tumor cells (CTC) that detach from the cancer primary and succeed to survive in distant organs. The aim of the present study was to develop a gene signature of CTC and to assess its prognostic relevance after surgery for pancreatic ductaladenocarcinoma (PDAC).
Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery.
Sex, Age, Disease stage
View SamplesPancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer in which differences in survival rates might be related to a variety in gene expression profiles. Although the molecular biology of PDAC begins to be revealed, genes or pathways that specifically drive tumour progression or metastasis are not well understood. Therefore, we performed microarray analyses on whole-tumour samples of 2 human PDAC subpopulations with similar clinicopathological features, but extremely distinct survival rates after potentially curative surgery, i.e., good outcome (OS and DFS>50months) versus bad outcome (OS<19months and DFS<7months). Additionally, liver- and peritoneal metastases were analysed and compared to primary cancer tissue. The integrin and ephrin receptor families were upregulated in all PDAC samples, irrespective of outcome, supporting an important role of the interaction between pancreatic cancer cells and the surrounding desmoplastic reaction in tumorigenesis and cancer progression. Moreover, some components, such as ITGB1 and EPHA2, were upregulated in PDAC samples with a poor outcome, Additionally, overexpression of the non-canonical Wnt/-catenin pathway and EMT genes in PDAC samples with bad versus good outcome suggests their contribution to the invasiveness of pancreatic cancer, with -catenin being also highly upregulated in metastatic tissue. Thus, we conclude that components of the integrin and ephrin pathways and EMT-related genes might serve as molecular markers in pancreatic cancer as their expression seems to be related with prognosis.
Molecular markers associated with outcome and metastasis in human pancreatic cancer.
Sex, Age, Specimen part, Disease stage
View SamplesTo evaluate the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC), we performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 control samples.
Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma.
Specimen part
View SamplesPurpose: To explore the side population (SP) in pancreatic ductal adenocarcinoma (PDAC) for its gene expression profile and its association to cancer stem cells (CSC) and to evaluate the value of genes from its gene signature on patient survival.
Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes.
Sex, Age, Specimen part, Disease stage
View SamplesIn an attempt to elucidate the molecular mechanisms underlying the multiple roles of L1 in endothelium, we checked whether manipulating its expression affected the transcriptome of lECs. To this purpose, we compared the gene expression profiles of L1-overexpressing and control lECs by Affymetrix, which revealed a remarkable effect of L1 overexpression on lECs transcriptome.
Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.
Specimen part
View SamplesThe goal of this study was to gain insight into the molecular heterogeneity of capillary endothelial cells derived from different organs by microarray profiling of freshly isolated cells and identify transcription factors that may determine the specific gene expression profile of endothelial cells from different tissues. The study focused on heart endothelial cells and presents a validated signature of 31 genes that are highly enriched in heart endothelial cells. Within this signature 5 transcription factors were identified and the optimal combination of these transcription factors was determined for specification of the heart endothelial fingerprint.
Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake.
Sex, Specimen part
View SamplesComparing the relative proportions of immune cells in tumor and adjacent normal tissue from NSCLC patients demonstrates the early changes of tumor immunity and provides insights to guide immunotherapy design. We mapped the immune ecosystem using computational deconvolution of bulk transcriptome data from the Cancer Genome Atlas (TCGA) and single cell RNA sequencing (scRNA-seq) data of dissociated tumors from early-stage non-small cell lung cancer (NSCLC) to investigate early immune landscape changes occurring during tumorigenesis. Computational deconvolution of immune infiltrates in 44 NSCLC and matching adjacent normal samples from TCGA showed heterogeneous patterns of alterations in immune cells. The scRNA-seq analyses of 11,485 cells from 4 treatment-naïve NSCLC patients comparing tumor to adjacent normal tissues showed diverse changes of immune cell compositions. Notably, CD8+ T cells and NK cells are present at low levels in adjacent normal tissues, and are further decreased within tumors. Myeloid cells exhibited marked dynamic reprogramming activities, which were delineated with differentiation paths through trajectory analysis. A common differentiation path from CD14+ monocytes to M2 macrophages was identified among the 4 cases, accompanied by up-regulated genes (e.g. ALCAM/CD166, CD59, IL13RA1, IL7R) with enriched functions (adipogenesis, lysosome), and down-regulated genes (e.g. CXCL2, IL1B, IL6R) with enriched functions (TNFa signaling via NF-kB, inflammatory response). Computational deconvolution and single cell sequencing analyses have revealed a highly dynamic immune reprogramming that occurs in early stage NSCLC development, suggesting that normalizing both immune compartments may represent a viable strategy for treatment of early stage cancer and prevention of progression. Overall design: Map the immune ecosystem using computational deconvolution of bulk transcriptome data from the Cancer Genome Atlas (TCGA) and single cell RNA sequencing (scRNA-seq) data of dissociated tumors from from early-stage non-small cell lung cancer (NSCLC) to investigate early immune landscape changes occurring during tumorigenesis
Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq.
Sex, Specimen part, Disease, Race, Subject
View SamplesTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer protein that can specifically kill tumor cells while sparing healthy ones. Emerging evidences suggest that TRAIL resistance in cancers is associated with aberrant expression of the key components of the apoptotic program. However, how these components are regulated at the epigenetic level is not understood. In this study, we aimed to identify novel epigenetic mechanisms regulating TRAIL response in Glioblastoma Multiforme (GBM) by a short-hairpin RNA (shRNA) screen. We employed an shRNA-mediated loss of function approach to interrogate the role of 48 genes in DNA and histone modification pathways. From this we identified KDM2B, an H3K36-specific demethylase, as a novel regulator of TRAIL response. Accordingly, silencing of KDM2B significantly enhanced TRAIL sensitivity, the activation of Caspase-8, Caspase-3, Caspase-7, and cleavage of PARP. KDM2B knockdown also accelerated the apoptosis process, as revealed by live cell imaging experiments. Moreover, simultaneous knockdown of the methyltransferases responsible for generating the histone marks removed by KDM2B significantly recovered the cell death phenotype observed with KDM2B inhibition. To decipher the downstream molecular pathways regulated by KDM2B, levels of apoptosis-related genes were examined by RNA-sequencing and quantitative PCR upon KDM2B loss, which revealed de-repression of pro-apoptotic genes HRK, caspase-7, and DR4 and repression of anti-apoptotic gene Mcl-1. The apoptosis phenotype was dependent on HRK upregulation, as HRK knockdown significantly abrogated the sensitization. In vivo, KDM2B-silenced tumors exhibited slower growth and reduced angiogenic capacity compared to controls. Taken together, our findings suggest a novel mechanism regulating apoptotic response, where the key apoptosis components are under epigenetic control of KDM2B in GBM cells. Overall design: mRNA profiles of U87MG GBM cells transduced either by control shRNA or shRNA targeting KDM2B were generated by RNA-seq (Illumina HiSeq 2500). 2 biological replicates of shControl and shKDM2B total RNAs were barcoded individually and deep sequenced as 3 technical replicates each in 3 lanes.
KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Bifidobacteria can protect from enteropathogenic infection through production of acetate.
No sample metadata fields
View Samples