Summary:
HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.
No sample metadata fields
View SamplesHEK293 cells were transfected with control plasmid (pcDNAI/Neo;Invitrogen) or with the plasmid encoding HCaRG. Stable transfectants were synchronized and grown in the presence of 10% FBS for 48 h. Total RNAs were purified with the mini RNeasy kit (Qiagen).
HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.
No sample metadata fields
View SamplesThese experiments aim determine the effects of Smo and Ets-2 signaling on fibroblast gene expression.
Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia.
Age, Specimen part
View SamplesThese experiments aim to determine global gene expression patterns in WT vs KPC isolated pancreatic fibroblasts Overall design: WT or KPC mice were isolated from pancreas and RNA-seq was performed
Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia.
Specimen part, Cell line, Subject
View SamplesThe SCL and LMO1 oncogenic transcription factors reprogram thymocytes into self-renewing pre-leukemic stem cells (pre-LSCs). Here we report that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1.
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.
Age, Specimen part
View SamplesThe Drosophila TRIM-NHL protein Brain tumor (Brat) plays important roles during early embryogenesis, in cell fate decisions, during neurogenesis and in mature neurons. Brat is an RNA-binding protein and functions as translational repressor. However, which RNAs Brat regulates and how RNA-binding specificity is achieved, is unknown. Using RNA-Immunoprecipitation we identify Brat-bound mRNAs in Drosophila embryos and define a consensus binding motif.
The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation.
Specimen part
View SamplesBackground Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. Results In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated through high-throughput RNA sequencing (RNA-seq) studies using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify modifications in the AS patterns of 240 cellular transcripts frequently involved in the regulation of gene expression and RNA metabolism. A significant number of the modified transcripts are also encoded by genes with important roles in viral infection/immunity. These modifications are expected to alter the functions of many cellular proteins. Finally, we used RT-PCR analysis in order to experimentally validate differential modifications in alternative splicing patterns that were observed through RNA-seq studies. Conclusion The present study demonstrated that viral infection can extensively modify the splicing patterns of numerous cellular transcripts. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. Finally, these data open new avenues of research for a better understanding of post-transcriptional events during virus infection and possible new targets toward the development of antiviral agents. Overall design: mRNAs were isolated from L929 mouse cell line, 14 hours after infection with T3D-S Reovirus or T3D-S Mutant reovirus at a MOI of 50. Control cells were uninfected. The resulting libraries were multiplexed and paired-end sequenced using Illumina HiSeq. Gene expression and alternative splicing were caracterized using Bowtie and RSEM.
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.
Specimen part, Cell line, Subject
View SamplesMouse haematopoietic stem cells (HSCs) undergo a post-natal transition in several properties, including a marked reduction in their self-renewal activity. We now show that the developmentally timed change in this key function of HSCs is associated with their decreased expression of Lin28b and an accompanying increase in their let-7 microRNA levels. Lentivirus(LV)-mediated overexpression of Lin28 in adult HSCs elevates their self-renewal activity in transplanted irradiated hosts, as does overexpression of Hmga2, a well-established let-7 target that is upregulated in fetal HSCs. Conversely, HSCs from fetal Hmga2-/- mice do not display the heightened self-renewal activity that is characteristic of wild-type fetal HSCs. Interestingly, overexpression of Hmga2 in adult HSCs does not mimic the ability of elevated Lin28 to activate a fetal lymphoid differentiation program. Thus Lin28b may act as a master regulator of developmentally timed changes in HSC programs with Hmga2 serving as its specific downstream modulator of HSC self-renewal potential.
The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells.
Specimen part
View SamplesFoxl2 is a forkhead transcription factor expressed only in the female, but not in the male gonad. We have created mice homozygous mutant for the Foxl2 gene (KO) as well as mice carrying a conditional mutant Foxl2 allele (floxed).
Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.
Specimen part
View SamplesSteroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by LH via its receptor leading to increased cAMP production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Leydig cell steroidogenesis then passively decreases following the rapid degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutive steroidogenic cell line R2C. Our data identify AMPK as an active repressor of steroid hormone biosynthesis in steroidogenic cells that is essential to preserve cellular energy and prevent excess steroid production.
A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis.
Specimen part, Treatment
View Samples