We recently isolated and identified (7E)-9-oxohexadec-7-enoic acid (1) and (10E)-9-oxohexadec-10-enoic acid (2) from the marine algae Chaetoceros karianus. Synthesis and biological characterization show that these are PPARa/? dual agonists. Herein we report the gene expression data from human SGBS pre-adipocytes, stimulated to differentiate with 1, 2 or the classical PPAR? agonist rosiglitazone. The transcriptome analysis shows that both compounds induce anti-diabetic gene programs in adipocytes by upregulating insulin-sensitizing adipokines and repressing pro-inflammatory cytokines. Overall design: Human SGBS pre-adipocytes were stimulated with adipogenic media supplemented with either (7E)-9-oxohexadec-7-enoic acid, (10E)-9-oxohexadec-10-enoic acid, or rosiglitazone from day 0 to day 4. On day 4, agonists were withdrawn, and the cells were allowed to differentiate following standard protocol. On day 8, RNA was isolated and sent to sequencing.
Synthesis and biological evaluations of marine oxohexadecenoic acids: PPARα/γ dual agonism and anti-diabetic target gene effects.
Specimen part, Cell line, Subject
View SamplesRecent work suggests that imprinted genes may regulate the signalling function of the placenta by modulating the size of the endocrine compartment. Our work provides in vivo evidence that this hypothesis is well founded.
The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources.
Specimen part
View SamplesThe use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be normalized, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples are at times the sole means of addressing specific questions – e.g., samples collected in the course of fieldwork.
RNA-seq: impact of RNA degradation on transcript quantification.
No sample metadata fields
View SamplesWe have addressed the question of how different rodent species cope with the life-threatening homeostatic challenge of dehydration at the level of transcriptome modulation in the supraoptic nucleus (SON), a specialised hypothalamic neurosecretory apparatus responsible for the production of the antidiuretic peptide hormone arginine vasopressin (AVP). AVP maintains water balance by promoting water conservation at the level of the kidney. Dehydration evokes a massive increase in the regulated release of AVP from SON axon terminals located in the posterior pituitary, and this is accompanied by a plethora of changes in the morphology, electrophysiological properties, biosynthetic and secretory activity of this structure. Microarray analysis was used to generate a definitive catalogue of the genes expressed in the mouse SON, and to describe how the gene expression profile changes in response to dehydration. Comparison of the genes differentially expressed in the mouse SON as a consequence of dehydration with those of the rat has revealed many similarities, pointing to common processes underlying the function-related plasticity in this nucleus. In addition we have identified many genes that are differentially expressed in a species-specific manner. However, in many cases, we have found that the hyperosmotic cue can induce species-specific alterations in the expression of different genes in the same pathway. The same functional end can be served by different means, via differential modulation, in different species, of different molecules in the same pathway. We suggest that pathways, rather than specific genes, should be the focus of integrative physiological studies based on transcriptome data.
Hypothalamic transcriptome plasticity in two rodent species reveals divergent differential gene expression but conserved pathways.
Sex, Specimen part
View SamplesCue-directed axon guidance depends partly on local translation in growth cones. Many mRNA transcripts are known to reside in developing axons yet little is known about their subcellular distribution or, specifically, which transcripts are in growth cones.
Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs.
Specimen part
View SamplesThe proper balance of excitatory and inhibitory neurons is crucial to normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors, Ascl1 and Ptf1a, are essential for generating the correct number and sub-type of neurons in multiple regions of the nervous system. Â In the dorsal spinal cord, Ascl1 and Ptf1a have contrasting functions in specifying inhibitory versus excitatory neurons. To understand how Ascl1 and Ptf1a function in these processes, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a regulate the specification of excitatory and inhibitory neurons in the dorsal spinal cord through direct regulation of distinct homeodomain transcription factors known for their function in neuronal sub-type specification. Besides their roles in regulating these homeodomain factors, Ascl1 and Ptf1a each function differently during neuronal development with Ascl1 directly regulating genes with roles in several steps of the neurogenic program including, Notch signaling, neuronal differentiation, axon guidance, and synapse formation. In contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Examination of the Ascl1 and Ptf1a bound sequences shows they are enriched for a common E-Box with a GC core and with additional motifs used by Sox, Rfx, Pou, and Homeodomain factors. Ptf1a bound sequences are uniquely enriched in an E-Box with a GA/TC core and in the binding motif for its co-factor Rbpj, providing two keys to specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding for how they function in neuronal development, particularly as key regulators of homeodomain transcription factors required for neuronal sub-type specification. Overall design: Examination of gene expression in Ascl1 and Ptf1a lineage cells in the developing neural tube.
A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord.
No sample metadata fields
View SamplesPGG is a natural product exhibits anti-cancer effects on different type of cancers including liver cancer cell lines. In present study we identified a set of genes affected by PGG treatment in Huh7 cells. Some of them, for example, control cell cycle and cell proliferation.
Induction of GNMT by 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside through proteasome-independent MYC downregulation in hepatocellular carcinoma.
No sample metadata fields
View SamplesPAX2 is one of nine PAX genes that regulate tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell lineage specification, migration, and survival. In our previous study, we found that PAX2 is highly expressed in low-grade ovarian serous carcinoma, but its expression in clear cell, endometrioid, and mucinous cell ovarian carcinomas have not been studied. More importantly, the functional role of PAX2 in ovarian cancer is not known.
PAX2 Expression in Ovarian Cancer.
Cell line, Treatment
View SamplesAnalysis of mRNA in THP1 (human monocytic leukemia) cell line in order to correlate miRNA activity with target abundance. Overall design: THP1 mRNA profiles were generated in triplicates by deep-sequencing in Illumina HiSeq2000.
High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries.
Specimen part, Cell line, Subject
View SamplesPrevious work has suggested that the imprinted gene Phlda2 regulates the signalling function of the placenta by modulating the size of the endocrine compartment. This study investigated the affect that Phlda2 mutant placenta has upon the brains of the wildtype dams carrying different placenta and consequently offspring.
Maternal care boosted by paternal imprinting in mammals.
Specimen part
View Samples