Identification of a NVS-ZP7-3 response signature in T-ALL cell lines to understand the transcriptional response in both Notch pathway active cell lines and Notch pathway inactive lines.
Discovery of a ZIP7 inhibitor from a Notch pathway screen.
Cell line, Treatment
View SamplesDetermine mRNA expression levels in cultured cardiomyocytes derived from human iPS cells Overall design: 1 sample
Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
Specimen part, Subject
View SamplesOne of the most important features of tumor microenvironment, imposing adverse effect on patient prognosis, is low oxygen tension. There are two types of hypoxia that may occur within tumor mass: chronic and cycling. Preliminary studies point at cycling hypoxia as being more relevant in induction of aggressive phenotype of tumor cells and radioresistance though little is known about the molecular mechanism of this phenomenon. Analysis of gene expression profile of human prostate (PC-3), ovarian (SK-OV-3) and melanoma (WM793B) cancer cells to expermental cycling (interchanging conditions of 1% and 21% oxygen) or chronic (1% oxygen) for 72 hours. Gene expression profiles were analyzed using U133 Plus 2.0 Array (Affymetrix) oligonucleotide microarrays. Data analysis revealed that globally gene expression profiles induced by the two types of hypoxia are similar and they strongly depend on the cell type.However, cycling hypoxia changes expression of lower number of genes in comparison to chronic one ( 3767 vs. 5954 probesets (p<0.001)) and to lower extent (lower fold changes). Analysis of hypoxia-regulated gene lists obtained using Random Variance Model t-test identified 253 probe sets (FC>2, p<0.001) common to all three cell lines, though no universal (changed throughout all analyzed cell lines) genes specifically influanced only by cycling hypoxia was selected. On the other hand, we identified such genes within particular one or two cell lines. Among them those related with EGF pathway seemed to be overrepresented (i.e. EPHA2, AREG, and HBEGF) and together with PLAU and IL-8 were mostly validated by Q-PCR.
Global gene expression profiling in three tumor cell lines subjected to experimental cycling and chronic hypoxia.
Specimen part, Cell line
View SamplesWe previously identified the ZTRE in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by MALDI-TOF mass spectrometry of a band excised after EMSA using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. siRNA targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5), SLC30A10 (ZnT10) and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered large changes in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability.
The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element.
Cell line
View SamplesWe recently reported that single-cell derived isogenic subclones of SKMEL5 cells have differential initial sensitivity to BRAF-inhibitors. In order to probe differences among these subclones, we selected three subclones with unique drug responses: progressing (SK-MEL-5 SC10), stationary (SK-MEL-5 SC07), and regressing (SK-MEL-5 SC01) and performed RNASeq. This study examines differentially expressed genes (DEGs) among the subclones to identify the molecular basis for initial differences in drug sensitivity. Overall design: Transcriptomics analysis between single-cell derived isogenic subclones of BRAF-mutated melanoma cell line, SK-MEL-5
A Nonquiescent "Idling" Population State in Drug-Treated, BRAF-Mutated Melanoma.
Specimen part, Cell line, Subject
View SamplesThe developmental transition to motherhood requires gene expression changes that alter the brain to prepare and drive the female to perform maternal behaviors. Furthermore, it is expected that the many physiological changes accompanying pregnancy and postpartum stages will impact brain gene expression patterns. To understand how extensive these gene expression changes are, we examined the global transcriptional response broadly, by examining four different brain regions: hypothalamus, hippocampus, neocortex, and cerebellum. Further, to understand the time course of these changes we performed RNA-sequencing analyses on mRNA derived from virgin females, two pregnancy time points and three postpartum time points. We find that each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions, across the time points. Additionally, several genes previously implicated in underlying postpartum depression change expression. This study serves as a comprehensive atlas of gene expression changes in the maternal brain in the cerebellum, hippocampus, hypothalamus, and neocortex. At each of the time points analyzed, all four brain regions show extensive changes, suggesting that pregnancy, parturition, and postpartum maternal experience substantially impacts diverse brain regions. Overall design: Libraries were prepared from three independent biological replicates, mRNA for each biological replicate was derived from a single mouse brain, with each mouse brain being used to collect all four brain regions.
An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
StemCellDB: the human pluripotent stem cell database at the National Institutes of Health.
Sex, Specimen part, Cell line
View SamplesTo broaden the appeal of the NIH Stem Cell Database, we analyzed a subset of undifferentiated human embryonic stem cell lines (5 lines in duplicate) on the Affymetrix platform. One standard culture protocol was used in conjunction with rigorous quality control. Expanded description of methods used and are available at: http://stemcelldb.nih.gov.
StemCellDB: the human pluripotent stem cell database at the National Institutes of Health.
Sex, Cell line
View SamplesWe used microarray to look at the genes deregulated in PaTu8988s (adenovirus insensitive) and PaTu8988t (adenovirus sensitive) cell lines
CEACAM6 attenuates adenovirus infection by antagonizing viral trafficking in cancer cells.
No sample metadata fields
View Samples