It is possible to identify the key genes and pathways involved in specific physiological processes using transcriptome analyses. However, these powerful new deep sequencing-based methods have rarely been applied to studies of memory function. We used the bow-tie maze to train rats by exposing them to highly familiar objects or to novel objects. Total RNA sequencing was then used to compare the transcriptome of the perirhinal cortices of naïve control rats and rats exposed to novel and familiar stimuli. Differentially expressed genes were identified between group Novel and group Familiar rats and these included genes coding for transcription factors and extracellular matrix-related proteins. Moreover, differences in alternative splicing were also detected between the two groups. To conclude, this study shows that RNA sequencing can be used as a tool to identify differences in gene expression in behaving animals undergoing the same task but encountering different exposures. Overall design: RNA profiles of perirhinal cortex from rats exposed to novel objects (n=5) or familiar objects (n=5) in a recognition memory task were investigated using the Ion Proton System. Controls were naïve rats that had not undergone any behavioural testing (n=4).
Recognition memory-induced gene expression in the perirhinal cortex: A transcriptomic analysis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function.
Specimen part, Disease, Cell line
View SamplesComparison of control vs SAFB1 knockdown
iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function.
Disease, Cell line
View SamplesIntegrator (INT) is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. INT has at least 14 subunits, but INT germline mutations causing human disease have not been reported. We identified mutations in the Integrator Complex Subunit 8 gene (INTS8) causing a rare neurodevelopmental syndrome. In patient cells we identified significant disturbance of gene expression and RNA processing. Also, we show that injection of ints8 oligonucleotide morpholinos into zebrafish embryos leads to prominent underdevelopment of the head demonstrating the evolutionary conserved requirement of INTS8 in brain development. Overall design: RNA sequencing was carried out using RNA samples from fibroblasts from two individuals with germline bi-allelic INTS8 mutations and from two healthy individuals
Human mutations in integrator complex subunits link transcriptome integrity to brain development.
No sample metadata fields
View Samples