FoxA transcription factors play major roles in organ-specific gene expression. How FoxA proteins achieve specificity is unclear, given their broad expression patterns and requirements in multiple cell types. Here, we characterize Sage, a basic helix-loop-helix (bHLH) transcription factor expressed exclusively in the Drosophila salivary gland (SG). We identify Sage targets and show that not only are both Sage and the single Drosophila FoxA protein, Fork head (Fkh), required for expression of these genes, but coexpression of Sage and Fkh is sufficient to drive target gene expression in multiple other cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage/Fkh targets. Importantly, Sage, Fkh and Sens colocalize on salivary gland polytene chromosomes. Thus, Fkh drives cell-type specific gene expression as part of a tissue-specific transcription module that includes Sage and Sens, providing a new paradigm for how mammalian FoxA proteins acheive specificity.
Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.
Specimen part
View SamplesRagweed challenge in Ragweed (RWE) sensitized animals generates Reactive oxygen species (ROS) in the airway epithelium and induces allergic airway inflammation. We want to study the genes induced by ROS generated by RWE. This goal can be achieved by comparing PBS challenge vs. RWE challenge.
Allergen challenge induces Ifng dependent GTPases in the lungs as part of a Th1 transcriptome response in a murine model of allergic asthma.
No sample metadata fields
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of Harlequin mouse as a model of oxidative-stress induced neurodegeneration of olfactory sensory neurons
Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse.
No sample metadata fields
View SamplesUse NGS-transcriptome profiling (RNA-seq) to investigate deregulated genes involved in the proliferative effects of ID-8 and Harmine after hypoxia-induced damage in primary human proximal tubular epithelial cells (HPTECs) Overall design: Examination of differentially expressed genes in HPTECs treated with 1uM of ID-8; or 1uM of Harmine; or EGF in comparison to cells without treatment after 24 hours of hypoxia, in triplicates
A High-Throughput Screen Identifies DYRK1A Inhibitor ID-8 that Stimulates Human Kidney Tubular Epithelial Cell Proliferation.
Specimen part, Subject
View SamplesThis is the expression dataset for two studies: 1) Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: Evidence for pregnancy-related regional-specific differences in adipose tissue and 2) Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.
Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.
Specimen part, Disease stage, Subject
View SamplesSecreted MOdular Calcium-binding protein-2 (SMOC2) belongs to the SPARC (Secreted Protein Acidic and Rich in Cysteines) family of matricellular proteins whose members are known for their secretion into the extracellular space to modulate cell-cell and cel Overall design: mRNA sequencing of mouse kidney of wildtype and Smoc2 transgenic mice with and without 7 day unilateral uretal obstruction intervention
Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation.
Treatment, Subject
View SamplesacLDL loading of mouse peritoneal macrophage is an in vitro foam cell model.
Cholesterol accumulation regulates expression of macrophage proteins implicated in proteolysis and complement activation.
No sample metadata fields
View SamplesThe mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined.
Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface.
Specimen part
View SamplesA specific subpopulation of neural progenitor cells, the basal radial glia cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that developing mouse medial neocortex, in contrast to the canonically studied lateral neocortex, exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse lateral neocortex, the bRGCs in medial neocortex exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medial neocortex and forced Hopx expression in mouse embryonic lateral neocortex demonstrate that Hopx is required and sufficient, respectively, for a bRGC abundance as found in developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medial neocortex that is highly related to bRGCs of developing gyrencephalic neocortex. Overall design: 221 single-cell transcriptomes from microdissected medial neocortex of E18.5 mouse embryos (two independent analyses using a pool of 8 neocortices each).
A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex.
Sex, Specimen part, Cell line, Subject
View SamplesThe targeting of oncogenic ‘driver’ kinases with small molecule inhibitors has proven to be a highly effective therapeutic strategy in selected non-small cell lung cancer (NSCLC) patients. However, acquired resistance to targeted therapies invariably arises and is a major limitation to patient care. ROS1 fusion proteins are a recently described class of oncogenic driver, and NSCLC patients that express these fusions generally respond well to ROS1-targeted therapy. In this study, we sought to determine mechanisms of acquired resistance to ROS1 inhibition. To accomplish this, we generated a ROS1 inhibition-resistant derivative of the initially sensitive NSCLC cell line HCC78.
Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer.
No sample metadata fields
View Samples