Clinical and genomic evidence support the view that the metastatic potential of a primary tumor may be dictated by transforming events acquired early in the tumorigenic process. It has been proposed that the presence of such pro-metastatic events in early-stage tumors reflects their additional capability to function as oncogenes. Here, to test this deterministic hypothesis and identify potential pro-metastasis oncogenes, we adopted a comparative oncogenomics-guided functional genetic screening strategy involving (i) global transcriptomic data from two genetically engineered mouse models of melanoma with contrasting metastatic potential, (ii) genomic and transcriptomic profiles of human primary and metastatic melanoma and (iii) an invasion screen in TERT-immortalized human melanocytes and melanoma cells in vitro as well as (iv) evidence of expression selection in human melanoma tissues. This integrated effort led to the identification of 6 genes that are both potently pro-invasive and oncogenic. Further, we show that one such pro-invasion oncogene, ACP5, can confer spontaneous metastasis in vivo, engages a key pathway governing metastasis and is prognostic in human primary melanomas.
Proinvasion metastasis drivers in early-stage melanoma are oncogenes.
Specimen part, Disease, Disease stage
View SamplesQuercetin has been shown to act as an anti-carcinogen in experimental colorectal cancer (CRC). The aim of the present study was to characterise transcriptome and proteome changes occurring in the distal colon mucosa of rats supplemented with 10 g quercetin/kg diet for 11 weeks. Transcriptome data analysed with Gene Set Enrichment Analysis showed that quercetin significantly downregulated the potentially oncogenic mitogen-activated protein kinase (Mapk) pathway. In addition, quercetin enhanced expression of tumor suppressor genes, including Pten, Tp53 and Msh2, and of cell cycle inhibitors, including Mutyh. Furthermore, dietary quercetin enhanced genes involved in phase I and II metabolism, including Fmo5, Ephx1, Ephx2 and Gpx2. Quercetin increased PPAR target genes, and concomitantly enhanced expression genes in volved in of mitochondrial fatty acid degradation. Proteomics performed in the same samples revealed 33 affected proteins, of which 4 glycolysis enzymes and 3 heatshock proteins were decreased. A proteome-transcriptome comparison showed a low correlation, but both pointed out towards altered energy metabolism.
Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis.
No sample metadata fields
View SamplesImmunoglobulin A (IgA) is the major secretory immunoglobulin isotype at mucosal surfaces where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IEC). IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response which protects from small intestinal inflammation. IEC ER stress causes expansion and activation of peritoneal B1b cells independent of microbiota and T cells that culminates in increased lamina propria and luminal IgA. Xbp1dIEC mice exhibit IEC ER stress by conditional deletion of X-box-binding protein 1 (XBP1). Here we examine single-cell transcriptomes of peritoneal cavity cells of germ-free Xbp1dIEC mice (KO) compared to littermate controls (WT). Overall design: Single-cell gene expression profiles of peritoneal cavity cells of 10-week-old germ-free Xbp1dIEC and WT mice were generated using a droplet-based system (10X Genomics Chromium).
Epithelial endoplasmic reticulum stress orchestrates a protective IgA response.
Cell line, Subject
View SamplesPurpose: To explore the side population (SP) in pancreatic ductal adenocarcinoma (PDAC) for its gene expression profile and its association to cancer stem cells (CSC) and to evaluate the value of genes from its gene signature on patient survival.
Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes.
Sex, Age, Specimen part, Disease stage
View SamplesMutations in CCAAT/enhancer binding protein alpha (CEBPA) are seen in 5-14% of acute myeloid leukemia (AML) and have been associated with a favorable clinical outcome. Most AMLs with CEBPA mutations simultaneously carry two mutations (CEBPAdouble-mut), usually biallelic, while single heterozygous mutations (CEBPAsingle-mut) are less frequently seen. Using denaturing high performance liquid chromatography and nucleotide sequencing we identified among a cohort of 598 newly diagnosed AMLs a subset of 41 CEBPA mutant cases, i.e. 28 CEBPAdouble-mut and 13 CEBPAsingle-mut cases. CEBPAdouble-mut associated with a unique gene expression profile as well as favorable overall and event-free survival, retained in multivariable analysis that included cytogenetic risk, FLT3-ITD and NPM1 mutation, white blood cell count and age. In contrast, CEBPAsingle-mut AMLs did not express a discriminating signature and could not be distinguished from wild type cases as regards clinical outcome. These results demonstrate significant underlying heterogeneity within CEBPA mutation positive AML with prognostic relevance.
Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy.
Sex, Age, Specimen part
View SamplesPURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a degenerative eye disorder affecting 4% of Americans older than 40. It is the leading indication for corneal endothelial (CE) transplantation for which there is a global donor shortage. This study aimed to gain further insight into the pathophysiology of FECD and identify targets for nonsurgical therapy.
Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy.
Sex, Age, Specimen part
View SamplesThe aim was to investigate mechanisms contributing to quercetins previously described effects on cell-proliferation and -differentiation, which contradicted its proposed anti-carcinogenic potency. In a 10-day experiment, 40 M quercetin stabilized by 1mM ascorbate reduced Caco-2 differentiation up to 50% (P<0.001). Caco-2 RNA from days 5 and 10, hybridized on HG-U133A2.0 Affymetrix GeneChips, showed 1,743 affected genes on both days (P<0.01). All 14 Caco-2 differentiation-associated genes showed decreased expression (P<0.01), including intestinal alkaline phosphatase that was confirmed technically (qRT-PCR) and functionally (enzyme-activity).
Pathway and single gene analyses of inhibited Caco-2 differentiation by ascorbate-stabilized quercetin suggest enhancement of cellular processes associated with development of colon cancer.
No sample metadata fields
View SamplesSuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA isolated from whole 16-cell stage Arabidopsis embryos is also included.
Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo.
Specimen part
View SamplesThe establishement of the first plant tissues occurs during embryo development. Indeed, cell types that will form the Arabidopsis root stem cell niche are first specified during 16-cell (16C), early globular (EG) and late globular (LG) stage of embryonic development. While some regulatory factors are known, we do not yet understand the genetic networks underlying the specification of these cell types. One main reason for this is the difficulties in adapting genome-wide approaches to the cellular level. Here, we have adapted such an approach (INTACT) to generate microarray-based cell type-specific transcriptomic profiles at 16C to LG stage for use in determining the role of the transcriptome in cell specification and differentiation during root stem cell niche formation.
Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo.
Specimen part
View Samples