In this study, we examined transcriptional profiles from 3 different microarray platforms, across 103 peripheral blood samples with and without acute rejection, to find a critical gene-set for the diagnosis of acute renal rejection that matched biopsy diagnosis, irrespective of patient demographics, clinical confounders, concomitant infection, immunosuppression usage or sample processing methods. We hypothesized that changes in peripheral blood expression profiles correlate with biopsy-proven rejection, and that these changes could be used as biomarkers for the diagnosis and prediction of acute rejection.
A peripheral blood diagnostic test for acute rejection in renal transplantation.
Disease, Disease stage
View SamplesIn this study, we examined transcriptional profiles from 3 different microarray platforms, across 103 peripheral blood samples with and without acute rejection, to find a critical gene-set for the diagnosis of acute renal rejection that matched biopsy diagnosis, irrespective of patient demographics, clinical confounders, concomitant infection, immunosuppression usage or sample processing methods. We hypothesized that changes in peripheral blood expression profiles correlate with biopsy-proven rejection, and that these changes could be used as biomarkers for the diagnosis and prediction of acute rejection.
A peripheral blood diagnostic test for acute rejection in renal transplantation.
Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3.
Cell line, Time
View SamplesPurpose: Study hypoxia and reoxygenation induced changes in genome-wide gene expression
Quantitative analysis of ChIP-seq data uncovers dynamic and sustained H3K4me3 and H3K27me3 modulation in cancer cells under hypoxia.
Cell line, Time
View Samples