We generated de novo induced pluripotent stem cells (iPSCs) from two Parkinson’s Disease patients (PD) harboring the p.A53T mutation. iPSC-derived mutant neurons displayed disease-relevant phenotypes at basal conditions, including protein aggregation, compromised neuritic outgrowth and contorted axons with swollen varicosities containing aSyn and tau. We have performed RNA Sequencing (RNA-Seq) of neurons from PD patient and control samples. RNA sequencing has also been performed to neurons derived from HUES samples subjected to the same differentiation protocol as reference. Overall design: We have performed RNA Sequencing (RNA-Seq) in neurons PD and control samples (two clones from each individual), along with HUES-derived neurons.
Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.
Specimen part, Subject
View SamplesPrevious reports suggest that outcome of cHL patients may be related to the tumor microenvironment, which in turn may be influenced by EBV infection. Gene profiling was used for further characterize the cHL microenvironment. A training set of 73 cHL tissue samples was profiled using Affymetrix DNA microarrays. Supervised analysis provided a gene signature separating EBV+ from EBV- cHL tissues, including genes characteristic of Th1 and antiviral response. Samples from patients with favourable outcome significantly overexpressed genes involved in the function of B-cells and plasmacytoid dendritic cells (pDCs), like BCL11A. A validation set of 146 cHL samples was analyzed using immunohistochemistry (IHC).
Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome.
No sample metadata fields
View SamplesWe conducted a randomized, double-blind, placebo-controlled trial in adults with moderate-to-severe AD unresponsive to conventional topical or systemic treatment. Fezakinumab (ILV-094; anti IL-22 monoclonal antibody) monotherapy was administered for 12 weeks (primary endpoint), and clinical responses were followed until week 20. AD transcriptome significantly improved at week 12 in fezakinumab vs. placebo (p<1E-18).
Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab.
Specimen part, Treatment, Subject
View Samples